水煤漿氣化合成氣顯熱回收對(duì)IGCC電站性能的影響
- 期刊名字:動(dòng)力工程學(xué)報(bào)
- 文件大?。?01kb
- 論文作者:鄧廣義,韓龍,范永春,馬雪松,鄭赟,吳家凱
- 作者單位:中國(guó)能源建設(shè)集團(tuán)廣東省電力設(shè)計(jì)研究院
- 更新時(shí)間:2020-10-02
- 下載次數(shù):次
第34卷第12期動(dòng)力工程學(xué)報(bào)Vol 34 No. 12014年12月Journal of Chinese Society of Power EngineeringDec.2014文章編號(hào):1674-7607(2014)12-0985-05中圖分類號(hào):TM611.3文獻(xiàn)標(biāo)志碼:A學(xué)科分類號(hào):470.30水煤漿氣化合成氣顯熱回收對(duì)IGCC電站性能的影響鄧廣義,韓龍,范永春,馬雪松,鄭赟,吳家凱(中國(guó)能源建設(shè)集團(tuán)廣東省電力設(shè)計(jì)研究院,廣州510663)摘要:利用 Thermoflex熱力系統(tǒng)軟件分別建立了基于 GE- Texaco和E-Gas水煤漿氣化的400MW級(jí)lGCC電站模型,通過(guò)設(shè)置的5種合成氣顯熱回收方案,分析了水煤漿氣化爐型、廢熱鍋爐配置和廢熱鍋爐出口合成氣溫度3個(gè)因素對(duì)IGCC電站性能的影響.結(jié)果表明:與 GE-Texaco全熱回收氣化技術(shù)相比,采用EGas全熱回收氣化技術(shù)時(shí)蒸汽輪機(jī)的發(fā)電量和凈發(fā)電量較低,供電效率提高、廠用電耗率降低;與合成氣激冷方案相比,增設(shè)輻射廢鍋和對(duì)流廢鍋可以提高GE-Texaco氣化合成氣顯熱回收過(guò)程的蒸汽質(zhì)量流量,進(jìn)而提高IGCC電站的蒸汽輪機(jī)發(fā)電量、凈發(fā)電量和供電效率;降低廢熱鍋爐出口合成氣的溫度可以改善IGCC電站的整體性能關(guān)鍵詞:IGCC電站;水煤漿氣化;顯熱回收;EGas氣化爐;電站性能Influence of Syngas Sensible Heat Recovery on Performances ofIGCC Power Plant Based on Coal Water Slurry GasificationDENG Guangyi, HAN Long, FAN Yongchun, MA Xuesong, ZHENG Yun, wU JiakaiGuangdong Electric Power Design Institute, China Energy Engineering GroupCo, Ltd, Guangzhou 510663, China)Abstract: 400 MW IGCC power plant models were developed based on GE- Texaco and E-Gas coal waterslurry gasification technologies by using Thermoflex thermodynamic system software. Five schemes forsyngas sensible heat recovery were set up to study the influence of following factors on the IGCC performance, such as the gasifier type, the configuration of syngas cooler and the syngas temperature at cooler exit, etc. Results show that comparing with GE- Texaco technology, E-Gas gasification process has lowersteam turbine output and net power output, but higher power supply efficiency and lower house powerconsumption rate under sensible heat recovery conditions; comparing with GE- Texaco quench method, thestallation of radiant and convective syngas coolers helps to promote the steam yield during syngas sensi-ble heat recovery process, thus elevating the steam turbine output, net power output and power supply ef-ficiency of the IGCC unit; decreasing the syngas temperature at cooler exit is beneficial to improve theplant performance.Key words: IGCC power plant; coal water slurry gasification; sensible heat recovery; E-Gas gasifier; power plant performance收稿日期:201403-07修訂日期:201404-28基金項(xiàng)目:中國(guó)國(guó)家留學(xué)基金管理委員會(huì)2013年公派訪問(wèn)學(xué)者資助項(xiàng)目(20130840中國(guó)煤化工作者簡(jiǎn)介:鄧廣義(1966-),女,廣東深圳人,高級(jí)工程師,學(xué)士,研究方向?yàn)?GCC電HCNMHG韓龍(通信作者),男,博士,電話(Te.):13602739897; E-mail: puxian@zu.edu.cm·986·動(dòng)力工程學(xué)報(bào)第34卷合成氣顯熱回收過(guò)程對(duì)提高IGCC電站的能源合成氣溫度3個(gè)因素來(lái)分析合成氣顯熱回收利用對(duì)利用效率具有重要作用.與干粉煤氣化技術(shù)相比,水IGCC電站性能的影響煤漿氣化時(shí)煤炭能量轉(zhuǎn)化為合成氣物理顯熱的比例增加,因此合成氣顯熱的回收利用對(duì)基于水煤漿氣1400MW級(jí)LGCC電站基本流程化的IGCC電站尤其重要圖1給出了所研究IGCC電站模型的基本流高健等的研究結(jié)果表明,應(yīng)盡可能地使高溫程氣化爐產(chǎn)生的粗合成氣經(jīng)過(guò)顯熱回收、凈化、加合成氣與余熱鍋爐中溫度較高的介質(zhì)進(jìn)行傳熱匹濕飽和和預(yù)熱等處理后進(jìn)入燃?xì)廨啓C(jī)發(fā)電,燃?xì)廨喤?對(duì)于采用三壓再熱方案的IGCC電站,當(dāng)輻射廢機(jī)透平排出高溫?zé)煔?其熱量在余熱鍋爐中通過(guò)換熱鍋爐(廢鍋)和對(duì)流廢熱鍋爐均與余熱鍋爐高壓省熱器產(chǎn)生高壓飽和蒸汽,這些蒸汽與粗合成氣顯熱煤器匹配時(shí),系統(tǒng)性能較優(yōu).王穎等研究發(fā)現(xiàn),回收裝置產(chǎn)生的蒸汽最后一起進(jìn)入蒸汽輪機(jī)裝置發(fā)廢鍋產(chǎn)生高壓蒸汽時(shí)的電站效率優(yōu)于產(chǎn)生中壓蒸汽電清潔合成氣的預(yù)熱介質(zhì)為來(lái)自余熱鍋爐高壓蒸時(shí)的電站效率,并推薦輻射廢鍋與對(duì)流廢鍋均產(chǎn)生發(fā)器的高壓飽和蒸汽.為獲得較優(yōu)的IGCC電站系飽和蒸汽,該結(jié)論與目前世界上投運(yùn)ICC電站的統(tǒng)性能并保持電站運(yùn)行的靈活性,采用部分整體化設(shè)計(jì)相一致.劉耀鑫等“針對(duì)EGas兩段式水的加壓深冷空氣分離裝置,空氣分離裝置所需的空煤漿氣化技術(shù),考查了氣化爐負(fù)荷、氣化溫度、氣化氣一半來(lái)自燃?xì)廨啓C(jī)裝置的壓氣機(jī),另一半來(lái)自獨(dú)壓力、水煤漿濃度和氧氣純度對(duì)lGCC系統(tǒng)性能和立的空氣壓縮機(jī).空氣分離裝置的產(chǎn)品N2約有效率的影響50%回注到燃?xì)廨啓C(jī)燃燒室中,這樣既可以控制以往的研究主要是針對(duì)200MW級(jí)IGCC電NO,的排放,又有利于增大燃?xì)廨啓C(jī)的透平流量和站,缺少一段式水煤漿氣化與兩段式水煤漿氣化技做功能力.回注的N2由燃?xì)廨啓C(jī)壓氣機(jī)抽取的空術(shù)的對(duì)比研究.筆者利用 Thermoflex熱力系統(tǒng)軟件氣進(jìn)行預(yù)加熱,剩余的N2排向大氣環(huán)境.lGCC電分別建立基于 GE-Texaco和EGas水煤漿氣化的站模型具體的配置方案和主要參數(shù)見(jiàn)表1.電站模型,從水煤漿氣化爐型、廢鍋設(shè)置和廢鍋出口熱量回收水煤漿合成氣凈化排空A合成氣預(yù)熱透PE LPB燃燒高壓缸}中壓缸燃?xì)廨啓C(jī)除氧器蒸汽輪機(jī)凝汽器AC-空氣壓縮機(jī);C-壓氣機(jī):T~透平;LPE一低壓省煤器;LPB低壓蒸發(fā)器;LPS-低壓過(guò)熱器;IPE一中壓省煤器;IPB-中壓蒸發(fā)器:PS-中壓過(guò)熱器:RH1-再熱器1;RH3-再熱器3;HPE一高壓省煤器0;HPE3一高壓省煤器3:HPB-高壓蒸發(fā)器;HPS0一高壓過(guò)熱器0;HPS1-高壓過(guò)熱器1;HPS3-高壓過(guò)熱器3圖1IGCC電站系統(tǒng)基本流程示意圖Fig. I Basic flow chart of an IGCC power plant氣化爐出口溫度為1371C的高溫粗合成氣直接由2合成氣顯熱利用方案水激冷至209C,然后進(jìn)入合成氣凈化處理單元;方圖2給出了400MW級(jí)GCC電站合成氣顯熱案2和方案3采用 GE-Texaco全熱回收流程,由輻利用的5種方案.5種方案均對(duì)脫硫后的清潔合成射廢鍋和對(duì)流廢鍋回收氣化粗合成氣的顯熱,方案氣進(jìn)行了加濕飽和,目的是降低燃?xì)廨啓C(jī)燃燒室絕2輻射廢鍋和對(duì)流廢鍋出口合成氣的溫度分別降至熱燃燒溫度,控制NO)的排放.方案1~方案3采850C和中國(guó)煤化工個(gè)溫度則降至更用GE- Texaco氣化技術(shù),方案4和方案5采用E低,分別CNMHG4和方案5采用Gas氣化技術(shù).方案1采用( E-Texaco激冷流程,EGas全熱回收流程,由于采用兩段式水煤漿氣化,第12期鄧廣義,等:水煤漿氣化合成氣顯熱回收對(duì)lGCC電站性能的影響987·表1400Mw級(jí)IGCC電站模型配置方案及主要參數(shù)對(duì)流廢鍋出口合成氣溫度降至450C,方案5中則Tab. 1 Configuration and main parameters of a400MW降至350C.表2給出了計(jì)算所用的煤種參數(shù)IGCC power plant表2煤種參數(shù)Tab 2 Coal p氣化爐GE-TexacoE-Gas項(xiàng)目數(shù)值3.23MP(水分)/%1371℃1590C/990℃u(灰分)/氣化條件(碳)/%78.97水煤漿濃度64%水煤漿濃度64%氫)/%激冷/輻射廢鍋v氮)/%1.01粗合成氣顯熱回收對(duì)流廢鍋對(duì)流廢鍋u(硫)%常溫除塵脫硫溫度:38C氧)/%1.粗合成氣凈化處理加濕飽和后溫度:150℃(氯)/%預(yù)熱清潔合成氣溫度:320C揮發(fā)分)/%壓力1.29MPa,溫度15C,(固定碳)/%空氣分離裝置Xa=0.5,Xg=0.5高位熱值/(kJ·kg-1)29920回注N2溫度:320℃GE9351FA,壓氣機(jī)壓縮比15.8,3計(jì)算結(jié)果與討論氣輪機(jī)trr=1327℃透平通流面積增加值:6%3.1合成氣顯熱回收方案對(duì)發(fā)電量的影響三壓再熱圖3給出了合成氣顯熱回收方案對(duì)IGCC電站高壓12.4MPa/566℃發(fā)電量的影響.圖中5種方案下燃?xì)廨啓C(jī)的發(fā)電量中壓2.36MPa/566℃蒸汽系統(tǒng)均為272MW,燃?xì)廨啓C(jī)運(yùn)行調(diào)節(jié)方式為:保持trm低壓0.379MPa/291℃恒定,通過(guò)調(diào)小壓氣機(jī)進(jìn)口可轉(zhuǎn)導(dǎo)葉(IGV)來(lái)適應(yīng)余熱鍋爐節(jié)點(diǎn)溫差:高壓20K,燃?xì)廨啓C(jī)透平氣體流量的變化.由圖3可知,與方案中壓20K,低壓10K注:1)R為氣化爐的碳轉(zhuǎn)化率,%;X為空氣分離整體化系數(shù);1相比,方案2和方案3的蒸汽輪機(jī)發(fā)電量由139X為空氣分離N2回注率;trm為燃?xì)廨啓C(jī)透平第一級(jí)動(dòng)葉進(jìn)口燃MW分別提高到199MW和205MW,方案4和方氣滯止溫度,℃案5的蒸汽輪機(jī)發(fā)電量的增加程度低于方案2和方案3,分別提高到167MW和173MW.由于蒸汽輪1371"C氧氣CE- Texaco氣化爐機(jī)發(fā)電量的增加,方案2~方案5的電站總發(fā)電量(a)方案1比方案1均有顯著提高,其中方案3提高幅度最大,水煤漿Exo爐5S射廢鋼8對(duì)流廢鋼50℃由方案1的41MW提高到47MW燃?xì)廨啓C(jī)發(fā)電量(b)方案2蒸汽輪機(jī)發(fā)電量500□總發(fā)電量水煤漿137C輻射廢750°對(duì)流廢鋼氧氣粗煤氣(c)方案3E-Gas氣粗煤氣對(duì)流度銅40(d)方案4水煤漿tE-Gas氣化爐990c對(duì)流廢鍋粗煤氣(e)方案5方案1方案2方案3方案4方案5圖2合成氣顯熱利用方案圖3合成氣顯熱回收方案對(duì)lGCC電站發(fā)電量的影響Fig 2 Schemes for sensible heat recovery from syngasFig 3 Effect中國(guó)煤化工 method onEGas氣化爐出口合成氣溫度降低至990℃,可取CNMHG消價(jià)格昂貴的輻射廢鍋而只設(shè)置對(duì)流廢鍋.方案4圖4給出了合成氣顯熱回收方案對(duì)IGCC電站988·動(dòng)力工程學(xué)報(bào)第34卷高壓、中壓、低壓蒸汽質(zhì)量流量的影響.由圖4可知,收明顯降低了IGCC電站的凈熱耗率和氧耗率,方與方案1相比,方案2~方案5中進(jìn)入汽輪機(jī)高壓案2~方案5的凈熱耗率由方案1的9312缸的高壓過(guò)熱蒸汽質(zhì)量流量均明顯增大,這是因?yàn)閗J/(kW·h)逐漸降至7740kJ/(kW·h),氧耗率方案2~方案5均采用廢鍋回收粗合成氣的顯熱,則由0.32kg/(kW·h)逐漸降低至0.22kg/(kW余熱鍋爐高壓給水的總吸熱量增加,從而提高了高h(yuǎn)).同時(shí),降低廢鍋出口合成氣的溫度有利于降低壓蒸汽的質(zhì)量流量.由于所研究IGCC電站的蒸汽凈熱耗率和氧耗率,方案3和方案5電站的凈熱耗系統(tǒng)采用三壓再熱方案,高壓過(guò)熱蒸汽經(jīng)高壓缸膨率和氧耗率分別低于方案2和方案4.盡管方案4脹做功,與中壓過(guò)熱蒸汽混合后變?yōu)樵贌嵴羝?再熱和方案5只設(shè)置了對(duì)流廢鍋,但其凈熱耗率和氧耗蒸汽經(jīng)中壓缸膨脹做功后再進(jìn)入汽輪機(jī)低壓缸做率均明顯低于方案2和方案3,說(shuō)明EGas氣化爐功.因此,高壓蒸汽質(zhì)量流量的增大使得中壓缸和低在降低IGCC電站凈熱耗率和氧耗率方面比GE壓缸入口蒸汽質(zhì)量流量也相應(yīng)增大Texaco氣化爐更有優(yōu)勢(shì).與方案1相比,方案4和方案5的高壓缸入口凈熱耗率一燃料消耗量x燃料熱值(1過(guò)熱蒸汽質(zhì)量流量由78.4kg/s分別增大到103.3kg/s和107.4kg/s,方案2和方案3的增大程度大氧耗率一空氣分離裝置產(chǎn)氧量于方案4和方案5,分別增大到128.1kg/s和12000132.9kg/s.以上結(jié)果表明:廢鍋的設(shè)置對(duì)IGCC電站的蒸汽質(zhì)量流量具有重要影響.與不設(shè)置廢鍋的100000.25方案1相比,方案4和方案5中EGas氣化爐設(shè)置對(duì)流廢鍋后蒸汽質(zhì)量流量增大,同時(shí)蒸汽輪機(jī)的發(fā)6000.15電量也增加.方案2和方案3中 GE-Texaco氣化爐同時(shí)設(shè)置輻射廢鍋和對(duì)流廢鍋,其蒸汽質(zhì)量流量和央4000蒸汽輪機(jī)發(fā)電量不但高于 GE-Texaco激冷方案,而2000且高于只設(shè)置對(duì)流廢鍋的方案4和方案5.此外,廢方案1方案2方案3方案4方案5鍋出口合成氣溫度對(duì)IGCC電站的蒸汽質(zhì)量流量也圖5合成氣顯熱回收方案對(duì)IGC電站凈熱耗率和氧耗率的影響有明顯影響.與方案2和方案4相比,方案3和方案Fg5 Effects of syngas sensible heat recovery method on IGCC net5中廢鍋出口合成氣的溫度均低了100K,使方案3heat rate and oxygen consumption rat較方案2、方案5較方案4的高壓缸入口過(guò)熱蒸汽圖6給出了合成氣顯熱回收方案對(duì)IGCC電站質(zhì)量流量分別增大4.8kg/s和4.1kg/s,蒸汽輪機(jī)空氣分離裝置電耗率及廠用電耗率的影響空氣分的發(fā)電量均提高了6MW.離裝置電耗率及廠用電耗率的定義見(jiàn)式(3)和式(4).由于方案1~方案5采用相同的空氣分離裝置,空氣分離裝置電耗率取決于電站的氧耗率.由圖5已知,方案2~方案5氧耗率逐漸降低,因此其空110氣分離裝置電耗率也由方案1的0.104MW/MW高壓缸入口過(guò)熱蒸汽中壓缸入口再熱蒸汽一低壓缸入口蒸汽方案1方案2方案3方案4方案5圖4合成氣顯熱回收方案對(duì)IGCC電站蒸汽質(zhì)量流量的影響Fig 4 Effects of syngas sensible heat recovery method on IGCC5steam mass flow32合成氣顯熱回收方案對(duì)IGCC電站凈熱耗率方案1方案2方案3方案4方案5和廠用電耗率的影響圖6合成氣H對(duì)IGCC電站空氣分離裝置電耗率及圖5給出了合成氣顯熱回收方案對(duì)IGCC電站中國(guó)煤化工凈熱耗率和氧耗率的影響凈熱耗率和氧耗率的定Fg.6EfeCN MH Gry method on IGCC義見(jiàn)式(1)和式(2).由圖5可知,采用合成氣顯熱回ASU and house power consumption rate第12期鄧廣義,等:水煤漿氣化合成氣顯熱回收對(duì)IGCC電站性能的影響逐漸降低至0.074MW/MW.由于IGCC電站的自用電量主要用于空氣分離裝置相應(yīng)地,廠用電耗率4結(jié)論由方案1的12.2%逐漸降低至方案5的9.4%.(1)設(shè)置廢鍋回收合成氣的顯熱可增大蒸汽質(zhì)空氣分離裝置電耗率=空氣分離裝置用電量量流量和蒸汽輪機(jī)發(fā)電量,有利于提高IGC電站的總發(fā)電量(3)(2)設(shè)置廢鍋回收合成氣顯熱可降低IGCC電廠用電耗率=GCC電站自用電量(4)站的氧耗率有利于降低電站空氣分離裝置電耗率綜合圖5和圖6可以看出,降低廢鍋出口合成和廠用電耗率氣的溫度有利于降低IGCC電站的凈熱耗率和氧耗(3)降低廢鍋出口合成氣的溫度可增大蒸汽質(zhì)量率進(jìn)而降低空氣分離裝置電耗率和廠用電耗率;采流量,同時(shí)降低IGCC電站的氧耗率和廠用電耗率,有用EGas氣化爐比 GE- Texaco氣化爐更有利于降利于降低IGCC電站的凈熱耗率提高供電效率低IGCC電站的凈熱耗率和廠用電耗率(4)與 GE-Texaco氣化技術(shù)相比,基于EGas3.3合成氣顯熱回收方案對(duì)電站整體性能的影響氣化技術(shù)回收合成氣顯熱更有利于提高IGCC電站圖7給出了合成氣顯熱回收方案對(duì)IGCC電站的性能凈發(fā)電量、耗煤熱容量和供電效率的影響.由圖7可參考文獻(xiàn)知,方案1~方案3的耗煤熱容量均為933MW,但方案2和方案3的凈發(fā)電量由方案1的361MW分[1]張健赟,麻林巍,李政,等.噴流床氣化技術(shù)選擇對(duì)IGCC系統(tǒng)能量利用效率的影響[J].中國(guó)電機(jī)工程學(xué)別提高到419MW和425MW,供電效率相應(yīng)地由報(bào),2012,32(17):36-43方案1的38.7%提高到44.9%和45.6%,說(shuō)明設(shè)ZHANG Jianyun, MA Linwei, LI Zheng, et aL. Im-置廢鍋明顯提高了IGCC電站的凈發(fā)電量和供電效pact of the choice of entrained-flow bed gasification率同時(shí),與方案1相比,方案4和方案5的耗煤熱t(yī)echnology on the energy efficiency of IGCC systems容量降低至868MW,但是凈發(fā)電量分別提高到[J]. Proceedings of the CSEE, 2012, 32(17):36-43398MW和404MW,說(shuō)明EGas氣化技術(shù)雖然只[2]高健,倪維斗,李政,等.IGCC系統(tǒng)關(guān)鍵部件的選擇及設(shè)置了對(duì)流廢鍋,也可顯著提高IGCC電站的凈發(fā)其對(duì)電廠整體性能的影響—(3)氣化爐合成氣冷卻電量和供電效率盡管方案4和方案5的凈發(fā)電量器與余熱鍋爐的匹配[J].動(dòng)力工程,2008,28(3)低于方案2和方案3,但是方案4和方案5耗煤熱471-474容量的降低程度更大,因此方案4和方案5的供電GAO Jian, NI Weidou, LI Zheng, et al. Option ofIGCC systems key components and their influence效率優(yōu)于方案2和方案3,說(shuō)明EGas氣化技術(shù)比the power plant's overall performance:(II)differentGE-Texaxo氣化技術(shù)更有利于提高IGCC電站的供arrangements of syngas coolers and HRSG [J].Jour-電效率nal of Power Engineering, 2008, 28(3):471-474■凈發(fā)電量[3]王穎邱朋華,吳少華,等.IGCC系統(tǒng)中余熱鍋爐的優(yōu)耗煤熱容量▲1000化研究[].電站系統(tǒng)工程,2009,25(5):31-32,35WANG Ying, QIU Penghua, WU Shaohua, etStudy on optimization of HRSG in IGCC system [J]Power System Engineering, 2009, 25(5):31-32,35以白[4]王穎,邱朋華,吳少華,等.整體煤氣化聯(lián)合循環(huán)系統(tǒng)10中廢熱鍋爐特性研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2010,30(5):54-58方案1方案2方案3方案4方案5WANG Ying, QIU Penghua, WU Shaohua, et al圖7合成氣顯熱回收方案對(duì)IGCC電站凈發(fā)電量、耗煤熱容量和Syngas cooler characteristic in integrated gasification供電效率的影響combined cycle system [J]. Proceedings of the CSEEFig 7 Effects of syngas sensible heat recovery method on IGCC net2010,30(5):54-58power output, coal consumption and power supply efficiency中國(guó)煤化x轉(zhuǎn)第996頁(yè))CNMHG996·動(dòng)力報(bào)第34[8] TCHANCHE B F, PAPADAKIS G, LAMBRINOSzation[J]. International Journal of Hydrogen EnergyG, et al. Fluid selection for a low-temperature solar2008,33(1):214224organic Rankine cycle[J]. Applied Thermal Engineer- [16] DISPENZA C, DISPENZA G, ROCCA V L,et aling,2009,29(11/12):2468247Exergy recovery during LNG regasification: electric9]KOSMADAKIS G, MANOLAKOS D, KYRITSISenergy production-Part one[J] Applied Thermal En-S,et al. Comparative thermodynamic study of refgineering,2009,29(2/3):380-387grants to select the best for use in the high-tempera- [17] DISPENZA C, DISPENZA G, ROCCA VL et ature stage of a two-stage organic Rankine cycle forExergy recovery during LNG regasification: electricRO desalination [J]. Desalination, 2009, 243(1/2/energy production-Part two [J]. Applied Thermal3):74-79Engineering,2009,29(2/3):388-399[10] WANG X D, ZHAO L, WANG J L. Experimenta[18] SONG Y H, WANG J F, DAI Y P. Thermodynamicinvestigation on the low-temperature solar Rankineanalysis of a transcritical CO2 power cycle driven bycycle system using R245fa[J]. Energy Conversion andsolar energy with liquified natural gas as its heat sinkManagement,2011,52(2):946-952.[J]. Applied Energy, 2([11] QUOILIN S, OROSZ M, HEMOND H, et aL. Per- [19] RAO W J, ZHAO L J, LIU C, et aL. A combinedformance and design optimization of a low-cost solarcycle utilizing LNG and low-temperature solar energyorganic Rankine cycle for remote power generation[J]. Applied Thermal Engineering, 2013, 60(1/2):[]. Solar energy,2011,85(5);955-96651-6[12] WANG Q, LI Y Z, WANG J. Analysis of power cy- [20] INCROPERA F P, DEWITT D P, BERGMAN Tcle based on cold energy onatural gas anFundamentals of heat and mass transfer[M].fifthlow-grade heat source [J]. Applied Thermal Engied. New York, USA: John Willy and Sons, 2002erIng,2004,24(4):539-548.[21] SHAH MM. A general correlation for heat transfer[13] SHI X J. A combined power cycle utilizing low-tem-during film condensation inside pipes[J].Internation-perature waste heat and LNG cold energyLJJ. Energyal Journal of Heat and Mass Transfer, 1979, 22(4)Conversion and Management, 2009, 50(3):567-575547556[14] ZHANG N, LIOR N. A novel near-zero CO2 emis- [22] GUNGOR K E, WINTERTON R H S. Simplifiedsion thermal cycle with LNG cryogenic exergy utilizageneral correlation for saturated flow boiling andtion[J]. Energy,2006,31(10):1661679comparisons for correlations with data[J].Chemical[15] ZHANG N, LIOR N. A novel Brayton cycle with theEngineering Research and Design, 1987,65(2):148-integration of liquid hydrogen cryogenic exergy utili(上接第989頁(yè))[5] U.S. Department of Energy, Office of Fossil Energter slurry gasifier upon performance of the IGCC sysTampa electric integrated gasification combined-cycletem [J]. Thermal Power Generation, 2012, 41(6):14-project: a DOE assessment[R]. USA: NETL, 2004:[8]劉耀鑫吳少華,李振中,等.兩段式水煤漿氣化爐氣[6]U.S. Department of Energy, Office of Fossil Energy.化參數(shù)對(duì)lGCC系統(tǒng)性能的影響[J].動(dòng)力工程學(xué)報(bào),Wabash river coal gasification repowering project: a2012,32(3):249-254DOE assessment[R]. USA: NETL, 2002:27.LIU Yaoxin, WU Shaohua, LI Zhenzhong, et al.I[7]劉耀鑫,吳少華,李振中,等.兩段式水煤漿氣化爐負(fù)fluence of gasification parameters in a two-stage coal-荷變化對(duì)IGCC系統(tǒng)性能的影響[J.熱力發(fā)電,2012,slurry gasifier on performance of the IGCC system41(6):14-18[JI. Journal of Chinese Society of Power EngineeringLIU Yaoxin, WU Shaohua, LI Zhenzhong, et aL.In-2012,32(3):249-254fluence of load variation concerning two-stage coal-wa中國(guó)煤化工CNMHG
-
C4烯烴制丙烯催化劑 2020-10-02
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-10-02
-
生物質(zhì)能的應(yīng)用工程 2020-10-02
-
我國(guó)甲醇工業(yè)現(xiàn)狀 2020-10-02
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-10-02
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡(jiǎn)介 2020-10-02
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-10-02
-
甲醇制芳烴研究進(jìn)展 2020-10-02
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-10-02






