生物質(zhì)熱解油的性質(zhì)精制與利用
- 期刊名字:中國(guó)工程科學(xué)
- 文件大?。?06kb
- 論文作者:朱錫鋒,鄭冀魯,郭慶祥,朱清時(shí)
- 作者單位:中國(guó)科技大學(xué)生物質(zhì)潔凈能源實(shí)驗(yàn)室
- 更新時(shí)間:2020-06-12
- 下載次數(shù):次
2005年9月中國(guó)工程科學(xué)ep.2005第7卷第9期Engineering ScienceVol 7 No. 9綜合述評(píng)生物質(zhì)熱解油的性質(zhì)精制與利用朱錫鋒,鄭冀魯,郭慶祥,朱清時(shí)(中國(guó)科技大學(xué)生物質(zhì)潔凈能源實(shí)驗(yàn)室,合肥230026)[摘要]從元素含量、化學(xué)成分、穩(wěn)定性、粘度、熱值等方面詳細(xì)敘述了熱解生物油的性質(zhì),介紹了生物油的精制和利用技術(shù),其中對(duì)近年來(lái)出現(xiàn)的生物油熱蒸氣直接催化精制、利用表面活性劑改良生物油使其直接用于柴油機(jī)等新技術(shù)給予了特別關(guān)注,對(duì)催化劑在生物油精制和利用過(guò)程中的影響也作了重點(diǎn)敘述。[關(guān)鍵詞]生物質(zhì);生物油;燃料特性;精制[中圖分類號(hào)]TK6[文獻(xiàn)標(biāo)識(shí)碼]A[文章編號(hào)]1009-1742(205)09-0083-06前言燃料。生物質(zhì)制備液體燃料的技術(shù)有多種,如熱解、近年來(lái)隨著國(guó)民經(jīng)濟(jì)和社會(huì)的快速發(fā)展,我國(guó)直接液化和生物法。其中熱解轉(zhuǎn)化技術(shù)由于具有廣對(duì)石油資源的需求也在持續(xù)增長(zhǎng),為彌補(bǔ)石油資源闊的工業(yè)化前景而備受人們關(guān)注,因此,研究和掌不足,近年來(lái)開始大力推進(jìn)用玉米制燃料乙醇和用握生物質(zhì)熱解制取的液體燃料(又稱生物油)的性煤制液體燃料的工業(yè)化生產(chǎn)。但是,中國(guó)作為人口質(zhì)、用途和深加工技術(shù),具有重要意義。大國(guó),糧食價(jià)格無(wú)法大幅度降低,煤是不可再生的化石資源,使用它將繼續(xù)增大溫室效應(yīng),因此,這2生物油的性質(zhì)兩個(gè)辦法都不可能廣泛和持久地采用。解決石油資2.1化學(xué)性質(zhì)源不足和環(huán)境污染問(wèn)題,其根本出路還是在于開發(fā)生物油來(lái)源于生物質(zhì),但不同生物質(zhì)在不同熱利用包括生物質(zhì)能在內(nèi)的各種可再生能源。解條件下制取的生物油的元素組成可能差別很生物質(zhì)是指直接或間接來(lái)源于各種綠色植物的大1一般木質(zhì)纖維素中氧的質(zhì)量分?jǐn)?shù)在40%左各類有機(jī)物的總稱,包括農(nóng)作物秸稈、農(nóng)林產(chǎn)品加右,其熱解產(chǎn)生的生物油中氧的質(zhì)量分?jǐn)?shù)一般也在工殘余廢棄物、速生林、薪炭林、藻類、性畜糞40%左右,這種生物油的典型元素組成為便、城市生活垃圾和有機(jī)工業(yè)廢水等。我國(guó)生物質(zhì)v(C)=53%,v(H)=6%,v(O)=40%和資源非常豐富,年產(chǎn)量達(dá)8×108多t石油當(dāng)量,v(N)=0.2%21。而藻類生物質(zhì)含有較多的脂類、能源總量超過(guò)30EJ。生物質(zhì)能是與壞境友好的可溶性多糖和蛋白質(zhì),所以,藻類生物質(zhì)制取的生種可再生能源,它本質(zhì)上是綠色植物光合作用轉(zhuǎn)化物油含氧量低,v(O約為17%3得到的一種太陽(yáng)能,特別是其能量載體碳元素來(lái)自在快速熱解工藝中,裂解產(chǎn)物的二次反應(yīng)被減于大氣中的二氧化碳,燃燒或腐解后又以二氧化碳至最小,生物質(zhì)的許多官能團(tuán)被保留,因此從生物的形式返回到大氣,從而構(gòu)成碳的生態(tài)循環(huán)鏈;生質(zhì)轉(zhuǎn)化為生物油的過(guò)程中氧元素的含量變化不大。物質(zhì)能又是一種獨(dú)特的可再生能源,除可直接燃燒所以,快速熱解雖然獲得了較高的生物油產(chǎn)量,但使用外,還可以通過(guò)多種技術(shù)途徑轉(zhuǎn)化為液體由此獲得的生物油也存在含氧量高的缺點(diǎn)。中速、[收膏日期]2004-08-23;修回日期2004-09-28作者簡(jiǎn)介]朱錫鋒(1962-),男,安徽南陵縣人,中國(guó)科技大學(xué)生物質(zhì)潔凈能源實(shí)驗(yàn)室副教授,從事生物質(zhì)能研究H84中國(guó)工程科學(xué)第7卷慢速熱解工藝由于裂解產(chǎn)物的二次裂解,許多含氧碳大部分在旋風(fēng)分離器被分離,但仍會(huì)有微量的碳官能團(tuán)斷裂,氧元素進(jìn)入不可凝氣體,由此得到的夾雜在生物油中。戴先文7等由木粉快速熱解獲生物油含氧量較快速熱解低。如A.A.得的生物油,α(C)為2%。生物油在生產(chǎn)過(guò)程中zabaniotou'41等利用木材為原料(v(O)達(dá)51.1%),還可能會(huì)混入一些灰分,其含量一般占生物油質(zhì)量在溫度為400~700℃,加熱速率120~165℃/s的0.1%左右,如 Kai sipila5等快速熱解稻草、松的條件下,獲得v(O)=30%的生物油。木和硬質(zhì)木材,三種生物油的ω灰分分別為生物油的化學(xué)成分非常復(fù)雜,獲知其詳細(xì)化學(xué)0.14%、0.07%和0.09%;戴先文7等快速熱解組成非常困難。目前采用的方法是將生物油的復(fù)雜粉制取的生物油中w灰分為01%;徐寶江0等擎化學(xué)組成進(jìn)行分類,然后再鑒別各類的主要成分??焖贌峤馑赡拘贾频玫纳镉椭谢曳譃?2%。Kai sipila5等對(duì)水萃取木質(zhì)纖維素生物質(zhì)如稻生物油的熱穩(wěn)定性比較差,加熱到一定溫度草和松木等熱解制取的生物油進(jìn)行了分析,他們將后,生物油的內(nèi)部組分將會(huì)發(fā)生聚合反應(yīng),這對(duì)生生物油分為溶于水的組分(水相)和不溶于水的組物油的精餾分離等過(guò)程非常不利。任錚偉等發(fā)分(油相)兩大類,并定量測(cè)定了水相主要成分的現(xiàn),快速熱解木屑制取的生物油加熱到120℃左右組成,結(jié)果發(fā)現(xiàn)水相占據(jù)生物油質(zhì)量的60%就形成海綿狀膠體,不能用蒸餾法分離;80%,水相主要由水、小分子有機(jī)酸和小分子醇組M.E. boucher1察了由樹皮經(jīng)過(guò)真空熱解成。以源于稻草的生物油為例,水相中的水占生物獲得生物油的熱穩(wěn)定性,生物油樣品分別在40℃、油質(zhì)量的19.9%、甲酸占1.85%,乙酸占50℃和80℃儲(chǔ)存168h,另外的一個(gè)樣品在室溫7.41%。張素萍等也用此法測(cè)定了源于木屑的下儲(chǔ)存1年,然后測(cè)量生物油的相分離時(shí)間(水相生物油的組成,水相中含量較多的成分為水和油相)、粘度和平均分子質(zhì)量。結(jié)果表明:被加c(H2O)=66.1%,乙酸質(zhì)量分?jǐn)?shù)為17.9%,羥基丙熱到80℃儲(chǔ)存的生物油的性質(zhì)發(fā)生了顯著改變,酮11.4%,油相用正庚烷萃取,正庚烷的萃取物進(jìn)而在40℃和50℃儲(chǔ)存的生物油的性質(zhì)變化不大行柱層析分離后分析,發(fā)現(xiàn)甲基呋喃占正庚烷的萃在80℃的條件下,生物油迅速出現(xiàn)相分離,放置取物質(zhì)量的14.17%,苯乙醇占12.38%,檢驗(yàn)出1周,其分子質(zhì)量的改變相當(dāng)于生物油在室溫下放的酚類占51%。對(duì)正庚烷不溶物用C3NMR進(jìn)行置1年的改變。實(shí)驗(yàn)還發(fā)現(xiàn),如果將生物油的水相分析,發(fā)現(xiàn)脂肪炭的含量遠(yuǎn)遠(yuǎn)大于芳香炭的含量,部分加入到另外一個(gè)生物油樣品,則這個(gè)生物油樣烷氧基炭的含量較高。戴先文7等快速熱解木粉,品的熱穩(wěn)定性顯著變差,這充分證明了生物油水相發(fā)現(xiàn)生物油中酚和有機(jī)酸的含量較大,烷烴占生物的組分是生物油不穩(wěn)定的原因;此外,如果在生物油質(zhì)量的31.04%,芳烴占13.47%。易維明8等油中加入甲醇,生物油的穩(wěn)定性將會(huì)得到增強(qiáng)。利用等離子加熱的方法快速熱解玉米秸粉,發(fā)現(xiàn)乙22物理性質(zhì)酸占生物油質(zhì)量的25.99%,羥基丙酮占生物油質(zhì)木質(zhì)纖維素生物質(zhì)熱解制取的生物油,其比重量1924%(換算后的數(shù)值)變化不大,約為1.2左右。由此可見,快速熱解木質(zhì)纖維素一類生物質(zhì)獲生物油粘度變化較大,40℃時(shí)生物油的粘度得的生物油,成分隨具體工藝條件和原料而變化,一般為20~200mPa·s。如 Kai sipila51等快速熱解含量較多的成分有水(質(zhì)量分?jǐn)?shù)在20%左右)、小稻草、松木,硬質(zhì)木材,在50℃時(shí),三種生物油分子有機(jī)酸、酚類、烷烴、芳烴、含碳氧單鍵和碳的粘度分別為11mPa·s、46mPa·s和50mPa·s,氧雙鍵的化合物如甲基呋喃、羥基丙酮等。且在室溫條件下,前65天可以觀察到生物油粘度生物油含有較多的小分子有機(jī)酸,pH值較低,顯著增加,此后生物油粘度變化不大;徐寶江0般為2.5左右。如 Kai sipila5等快速熱解稻草、等快速熱解松木屑,溫度為40℃時(shí),生物油的粘松木和硬質(zhì)木材,三種生物油的pH分別為37,度約為64ma;廖艷芬6等快速熱解木材獲得2.6和2.8;戴先文等快速熱解木粉,獲得的生物的生物油,粘度為150mPa·s。含水率對(duì)生物油的油pH為2.1;任錚偉等快速熱解木屑,獲得的粘度影響較大,含水率大的生物油,其粘度一般較生物油pH為2.5。小。此外,如果生物油含有較多的極性基團(tuán)(一般生物質(zhì)快速熱解過(guò)程中還會(huì)生成一些碳,這些是含氧基團(tuán))和較大的分子,分子間作另興,則萬(wàn)方數(shù)第9期朱錫鋒等:生物質(zhì)熱解油的性質(zhì)精制與利用85粘度增大75%,而酚類質(zhì)量分?jǐn)?shù)從原來(lái)的40%減少到18%2.3燃料性質(zhì)由此可見,生物油經(jīng)過(guò)催化加氫,其含氧量大大生物油的熱值受到普遍關(guān)注。 Kai sipila51等快減少。速熱解稻草、松木和硬質(zhì)木材,三種生物油的低位催化加氫可以顯著降低生物油含氧量,但成本熱值分別為16.9M/kg、192M/kg和16.6M/較高。生物油粘度大、熱穩(wěn)定性差,操作中容易導(dǎo)kg。王樹榮12等快速熱解各種木材和秸稈,發(fā)現(xiàn)致反應(yīng)器堵塞。生物油還會(huì)覆蓋催化劑活性中心,由水曲柳制備的生物油熱值為234M/kg(干基導(dǎo)致催化劑失活,降低催化劑的壽命。因此,近年熱值),源自其它原料的生物油的熱值約18MJ/kg來(lái)出現(xiàn)了一種新的催化加氫的思路,即生物油熱解(干基熱值)。戴先文7等快速熱解木粉,得到生獲得的油蒸氣直接進(jìn)行催化加氫,然后再冷凝獲得物油的高位熱值為16~23M/kg。任錚偉等快低含氧量的生物油產(chǎn)品。 J. Dilcio rocha13先使用速熱解木屑,獲得了高位熱值為21.3M/kg生物固定床熱解纖維素獲得生物油蒸氣,然后以經(jīng)過(guò)硫油。由此可見,生物油的高位熱值一般為20MJ/化的NMo為催化劑,在520℃的條件下對(duì)生物油kg,熱值較低的原因在于生物油含氧量高,同時(shí)蒸汽加氫處理,當(dāng)氫壓為2.5MPa時(shí),生物油中含有較多水分。氧的質(zhì)量分?jǐn)?shù)為31.7%,當(dāng)氫壓為10MPa,生物閃點(diǎn)和流動(dòng)點(diǎn)是液體燃料的兩個(gè)較重要的性油中氧的質(zhì)量分?jǐn)?shù)為98%質(zhì)。閃點(diǎn)是指液體燃料加熱到一定溫度后,液體燃M.I. Nokkosmaki16使用ZnO作催化劑直接料蒸汽與空氣的混合氣接觸火源而閃光的最低溫催化熱解得到的生物油蒸氣以提高生物油的穩(wěn)定度。流動(dòng)點(diǎn)也稱凝固點(diǎn),因?yàn)樵S多液體燃料是混合性。結(jié)果表明,經(jīng)過(guò)ZnO催化得到的生物油穩(wěn)定物,所以液體燃料凝固時(shí)是漸漸從液體變成固體性提高。將經(jīng)過(guò)與沒(méi)有經(jīng)過(guò)ZnO催化的生物油同的,即液體燃料的凝固是在一定溫度范圍內(nèi)完成時(shí)在80℃的條件下儲(chǔ)存24h進(jìn)行對(duì)比,沒(méi)有經(jīng)過(guò)的,通常把液體燃料凝結(jié)成固態(tài)時(shí)的最高溫度稱為催化的生物油粘度增加了129%,經(jīng)過(guò)催化的生物流動(dòng)點(diǎn)或凝固點(diǎn)。液體燃料閃點(diǎn)越高、流動(dòng)點(diǎn)越油粘度增加了55%。高,表明其中的組分相互作用力大、不易揮發(fā)組分直接對(duì)生物油蒸氣進(jìn)行催化加氫的優(yōu)點(diǎn)主要在多。 Kai Sipila5等快速熱解稻草、松木,硬質(zhì)木于節(jié)省能源,無(wú)需對(duì)生物油再次加熱升溫,生物油材,獲得3種生物油的閃點(diǎn)分別為56℃,76℃和蒸汽對(duì)催化劑活性中心的看蓋程度較低,可以顯著106℃以上,流動(dòng)點(diǎn)分別為-36℃,-18℃和-9延長(zhǎng)催化劑的壽命?!?。由于生物油成分復(fù)雜且含有較多極性組分,故催化裂解是在催化劑的作用下將生物油分子裂這兩項(xiàng)數(shù)值較高,變化也較大。解成較小的分子,包含在汽油餾程內(nèi)的烴類組分3生物油的精制生物油中的氧以H2O、CO和CO2的形式除去。催化裂解獲得的精制油的產(chǎn)率一般比催化加氫低,但生物油的高含氧量表明其內(nèi)部存在許多高極性催化裂解反應(yīng)可以在常壓下進(jìn)行,不需要還原性氣基團(tuán),并導(dǎo)致其粘度較高、化學(xué)穩(wěn)定性較差和熱值體,反應(yīng)條件比催化加氫溫和。較低。因此,生物油精制的核心是脫除生物油中的郭曉亞等17采用HZSM5分子篩催化劑,將氧,在此主要介紹催化加氫和催化裂解兩種精制方生物油(由木屑在循環(huán)流化床中快速熱解得到)與法溶劑四氫化茶以1:1的質(zhì)量比混合,在固定床反應(yīng)催化加氫是在高壓(10~20MPa)和存在供器內(nèi)催化裂解,實(shí)驗(yàn)結(jié)果表明,精制油中的含氧化氫溶劑的條件下,在催化劑作用下對(duì)生物油進(jìn)行加合物如有機(jī)酸、酯、醇、酮、醛的含量大大降低,氫處理。 Piskorz J.[131使用經(jīng)過(guò)硫處理的CoM催而不舍氧的芳香烴含量增加?;瘎?duì)生物油加氫,處理后生物油的v(O)僅為J.D. adjaye1考察了催化生物油生產(chǎn)烴類的0.5%; Churin14等在固定床反應(yīng)器用CMo和過(guò)程。他使用HZSM5和硅鋁作為催化劑,實(shí)驗(yàn)NiMo催化劑,在壓力為5~12MPa、溫度為270發(fā)現(xiàn)使用HZSM5時(shí),烴類產(chǎn)品的質(zhì)量產(chǎn)率為400℃的條件下對(duì)生物油催化加氫,處理后生物27.9%(以未催化的生物油為基準(zhǔn)),使用硅鋁時(shí),油的烴類質(zhì)量分?jǐn)?shù)從10%~20%提高到70%相應(yīng)產(chǎn)率為13.2%。令人感興趣的是經(jīng)過(guò)86中國(guó)工程科學(xué)第7卷HZSM5催化的生物油包含更多的芳香烴,而經(jīng)過(guò)乙醇混合直接用于渦輪機(jī)的可能性。實(shí)驗(yàn)發(fā)現(xiàn),雖硅鋁催化的生物油包含更多的脂肪烴。芳香烴產(chǎn)品然快速熱解油由于較大的粘度對(duì)油的噴射造成困主要有甲苯、二甲苯、三甲苯,脂肪烴主要含己難,但將生物油與乙醇混合后,生物油粘度降低,烷、戊烷、環(huán)戊烷、環(huán)丙烯??梢院芎玫慕鉀Q噴射問(wèn)題。他還進(jìn)行了生物油—乙醇混合物的燃燒測(cè)試,發(fā)現(xiàn)當(dāng)生物油質(zhì)量分?jǐn)?shù)為4生物油的利用80%、乙醇質(zhì)量分?jǐn)?shù)為20%時(shí),該混合物的燃燒生物油可以作為液體燃料使用,也可以作為原性能最佳。料生產(chǎn)其它化學(xué)品。有人提出利用水蒸氣催化重整從生物油中制取如果直接將裂解生物油作為柴油機(jī)燃料,那么氫氣。C.M. Kinoshita2提出將生物油霧化后與必須對(duì)柴油機(jī)的機(jī)械結(jié)構(gòu)做很大改進(jìn),柴油機(jī)的操水蒸氣混合,然后混合氣進(jìn)入裝有催化劑和吸附劑作也會(huì)變得非常復(fù)雜。因此,直接利用裂解生物油CaO的反應(yīng)器中被催化重整,生成的CO2與化學(xué)作為燃料的局限性很大。除了對(duì)生物油進(jìn)行催化加吸附劑CaO反應(yīng)生成CaCO3,促進(jìn)了化學(xué)平衡向氫、催化裂解,進(jìn)一步精制后再利用外,科學(xué)工作催化重整的方向移動(dòng)。他使用 Aspen軟件模擬這個(gè)者還提出了其它利用生物油作為液體燃料的思路,過(guò)程,發(fā)現(xiàn)每kg生物油經(jīng)過(guò)帶化學(xué)吸附的催化重其中之一是將裂解生物油與其它液體燃料混合后作整過(guò)程,可獲得0.07~0.08kg氫氣。Lui423考為燃料直接使用。察了催化劑在水蒸氣催化重整過(guò)程中對(duì)氫氣產(chǎn)率的D. Chiaramonte1詳細(xì)探討了在60~65℃的影響,他首先向快速熱解油中加水,促使生物油分條件下,使用乳化劑作為表面活性劑,將生物油和為油水兩相,取水相部分進(jìn)行水蒸氣催化重整。在柴油混合成為乳濁液而直接用于柴油機(jī)。實(shí)驗(yàn)發(fā)溫度825℃和875℃,質(zhì)量空速(反應(yīng)物質(zhì)量流率現(xiàn),當(dāng)生物油在混合體系中質(zhì)量分?jǐn)?shù)小于45%時(shí),催化劑質(zhì)量)126000h-1,停留時(shí)間26ms的條生物油成為液滴分散在柴油中;當(dāng)柴油在混合體系件下,比較了Ni,Ni-Cr,NCo催化劑的催化效中質(zhì)量分?jǐn)?shù)小于45%時(shí),柴油成為液滴分散在生果,發(fā)現(xiàn)NCr,Ni-Co催化劑作用的催化重整反物油中;如果兩種油的含量接近50%,則兩種油應(yīng)獲得的氫氣產(chǎn)率比Ni高20%。這是因?yàn)樵贜i在混合體系中都成為連續(xù)相。他們發(fā)現(xiàn),乳濁液比催化劑中添加了Cr或Co后,能夠抑制水蒸氣重整純生物油有更高的穩(wěn)定性,在80℃的條件下分別過(guò)程中的結(jié)焦,防止催化劑失活將純生物油和乳濁液保存24h,純生物油粘度增生物油的高含氧量對(duì)于其用作燃料來(lái)說(shuō),是加了44%~156%,而乳濁液粘度只增加了3%個(gè)非常不利的因素。但如果利用生物油合成含氧有24%。提高乳化劑用量,乳濁液的穩(wěn)定性將增加。機(jī)物,則其高含氧率將由劣勢(shì)轉(zhuǎn)化為優(yōu)勢(shì)。 Martin他們用生物油一柴油乳濁液燃料在柴油機(jī)上做了試H. Bender[241提出利用生物質(zhì)和生物油生產(chǎn)含氧有驗(yàn),發(fā)現(xiàn)只需對(duì)柴油機(jī)在材料方面做微小改變,即機(jī)化合物的概念,并建議有機(jī)化學(xué)工業(yè)從以烴類原柴油機(jī)的噴嘴和輸油泵采用抗腐蝕的不銹鋼來(lái)制造料為主導(dǎo)轉(zhuǎn)變?yōu)橐陨镔|(zhì)原料為主導(dǎo),這就需要重中離心,去除生物油的重組分,然后將去除了重組5工業(yè)就可以。 Michio ikura201考察了生物油一柴油乳濁新構(gòu)建化學(xué)液的穩(wěn)定性和腐蝕性,他們先將生物油置于離心機(jī)分的生物油與柴油混合制成乳濁液。實(shí)驗(yàn)發(fā)現(xiàn),表生物油含有較多的水分和含氧有機(jī)化合物,如面活性劑濃度對(duì)乳濁液的穩(wěn)定性影響很大,如果表羧酸、酚類等,所以生物油含氧量高,熱值比石油面活性劑占乳濁液體系的質(zhì)量的08%~1.5%,燃料低,分子間作用力大,粘度大,pH值低,分則能形成穩(wěn)定的乳濁液體系。他們?cè)?0℃下分別間受熱易于聚合,熱穩(wěn)定性差。測(cè)試了鋼棒浸泡于純生物油和生物油一柴油乳濁液上述性質(zhì)決定生物油不宜直接作為燃料,必須24h后的腐蝕情況,浸泡在純生物油中的鋼棒質(zhì)經(jīng)過(guò)精制加工,降低生物油的氧含量,盡量使生物量損失了72%,而浸泡在生物油質(zhì)量分?jǐn)?shù)為20%油的pH值接近中性,提高生物油的熱穩(wěn)的乳濁液體系中的鋼棒質(zhì)量只損失了35%定性。G. lopez juste21察了將快速熱解生物油與生物油成分非常復(fù)雜,各組分都潤(rùn)介H測(cè)起,第9期朱錫鋒等:生物質(zhì)熱解油的性質(zhì)精制與利用7分離非常困難,每種成分的絕對(duì)含量都不大,因此12]王樹榮,駱仲泱,董良杰,等.生物質(zhì)閃速熱裂解通過(guò)分離-合成路線來(lái)制造化工產(chǎn)品成本可能比較制取生物油的實(shí)驗(yàn)研究[J].太陽(yáng)能學(xué)報(bào),2002,23高,工業(yè)化前景可能不大。如果能開發(fā)出將全部生(1):4~10物油轉(zhuǎn)化為某一種與生物油C、H、O比例近似的13]PsoJ, Majeski P, Radilein D,etl. Conversion有機(jī)化合物的工藝,將有非常大的工業(yè)應(yīng)用前途。of lignin to hydrocarbon fuels [J]. Energy Fuel1989,3:723~726就目前狀況來(lái)說(shuō),利用生物油生產(chǎn)化工產(chǎn)品處于摸4 Churin E, grange P, Delmn B. Catalysis Oils Biomass索實(shí)驗(yàn)階段。大部分集中在生產(chǎn)烴類、氫氣等不含for Energy and Industry [M]. London: Elsevier Appl氧化工原料。如何充分利用生物油的氧元素,使生Sci pub,1990,120~125物油的高含氧量的劣勢(shì)轉(zhuǎn)變?yōu)閮?yōu)勢(shì),是一個(gè)非常重15 Rocha j, Carlos d, luengo A, Snape e. The scope要的研究課題。for generating bio-oils with relatively low oxygencontents via hydropyrolysis Jganic參考文獻(xiàn)Geochemistry,1999,30:1527~1534[1]劉榮厚,張春梅.我國(guó)生物質(zhì)熱解液化技術(shù)的現(xiàn)狀16] Nokkosmakim i, Kuoppala E T,E., Leppamaki A[J].可再生能源,2004,(2)9~12Catalytic conversion of biomass vapours with zinc oxide[2]廖艷芬,王樹榮,洪軍,等.生物質(zhì)熱裂解制取[J]. Journal of analytical and applied pyrolysis, 2000液體燃料的實(shí)驗(yàn)研究[J].能源工程,2003,3:1-355:119~131[3]繆曉玲,吳慶余,微藻生物質(zhì)可再生能源的開發(fā)利17]郭曉亞,顏涌捷,李庭琛,等.生物質(zhì)裂解油催化裂用[J.可再生能源,2003,3:13~16解精制[J].過(guò)程工程學(xué)報(bào),2003,3(1):91~95[4 Zabaniotou a a, Karabelas A J. The Evritania [18] Adjaye J D, BakhshiNN. Production of hydrocarbonsGreece) demonstration plant of biomass pyrolysis [J]by catalytic upgrading of a fast pyrolysis bio-oil. PartBiomass and bioenergy, 1999,16: 431-445I: conversion over various catalyst [J][5] Sipila K, Kboppala E, Fagernas L. Characterization ofProcessing Technology, 1995, 45: 161-183biomass-based flash pyrolysis oils [J]. Biomass and[19] Chiaramonti D, Bonini M, Fratini E. Development ofBioenergy,1998,14(2):103~113emulsions from biomass pyrolysis liquid and diesel and6]張素萍,顏涌捷,任錚偉,等.生物質(zhì)快速裂解液their use in engines-Part 1: emulsions production [J]體產(chǎn)物分析[J.華東理工大學(xué)學(xué)報(bào),2001,27(6)Biomass and bioenergy, 2003, 25 85-99666~668[20] Ikura M, Stanciulescu M, Hogan E. Emulsification of[7]戴先文,吳創(chuàng)之,周肇秋,等.循環(huán)流化床反應(yīng)器固pyrolysis derived bio- oil in diesel fuel [J]: Biomass體生物質(zhì)的熱解液化[J].太陽(yáng)能學(xué)報(bào),2001,22and bioenergy, 2003, 24: 221-232(2):124~130[21] Juste G L, J. Monfort J S. Preliminary test on[8]易維明,柏雪源,何芳,等.利用等離子體進(jìn)行生combustion of wood derived fast pyrolysis oils in a gas物質(zhì)液化技術(shù)的研究[J].山東工程學(xué)院學(xué)報(bào),turbine combustor [J]. Biomass and Bioenergy, 20002000,14(1)19:119~1239]任錚偉,徐清,陳明強(qiáng),等.流化床生物質(zhì)快速222 inoshita C M, Turn s Q. Production of hydrogen裂解制液體燃料[J].太陽(yáng)能學(xué)報(bào),2002,23,(4):from bio-oil using CaO as COz sorbent [J]462~466International Journal Hydrogen Energy, 2003, 28:[10]徐保江,李美玲,曾忠.旋轉(zhuǎn)錐閃速熱解生物質(zhì)1065~1071實(shí)驗(yàn)研究[J].環(huán)境工程,1999,17(5):71~7423] Garcia L, French R, Czernik S. Catalytic steam[11 Boucher M E, Chaala A, Roy C. Bio-oils obtained byreforming of biooils for the production of hydrogenvacuum pyrolysis of soft wood bark as a liquid fuel foreffects of catalyst composition [J]. Applied catalysisgas turbines. Part I: Stability and ageing of bio-oilA: General,2000,201:225~239and its blends with methanol and a pyrolytic aqueous [24] Bender M H. Potential conservation of bilomas in thephase [J]. Biomass and Bioenergy, 2000, 19: 351production of synthetic organics[ J ]. Resource361conversion and Recycling, 2000, 30: 49-5888中國(guó)工程科學(xué)第7卷Property, Up-grading and Utilization of Bio-oil from BiomassZhu Xifeng, Zheng Jilu, Guo Qingxiang, Zhu QingshiLaboratory of biomass clean energy, University of Science and Technology of China, Hefei 230026, ChinaAbstract] element content, chemical composition, stability, viscosity and heat value of bio-oil are analyzedbased on many literatures in this paper. Some new technologies to refine and to utilize bio-oil are introduced suchas directly catalyzing bio-oil vapor, and adding surfactants into bio-oil, so that it can be used directly in dieselengine. The catalysts and their effects on the refining and utilization of bio-oil are discussedL Key words] biomass; bio-oil; fuel property; up-grading中國(guó)與巴西合資生產(chǎn)ERJ145渦扇支線飛機(jī)20年2月15日,國(guó)務(wù)院做出了發(fā)展30—70座級(jí)渦扇支線飛機(jī)的重大決策,作為發(fā)展我國(guó)航空工業(yè)的重要戰(zhàn)略舉措。2002年9月,中航第二集團(tuán)公司與巴西航空工業(yè)公司簽署了合作框架協(xié)議,確定了在民用飛機(jī)領(lǐng)域建立長(zhǎng)期的戰(zhàn)略合作伙伴關(guān)系。2002年12月2日,中航第二集團(tuán)公司與巴西航空工業(yè)公司正式簽訂合資生產(chǎn)渦扇支線飛機(jī)合同。2003年12月16日,中航第二集團(tuán)公司與巴西航空工業(yè)公司合資總裝的ERJ45渦扇支線飛機(jī)在哈爾濱首飛成功(見本期封面)。這是我國(guó)生產(chǎn)的第一架具有世界先進(jìn)水平的渦扇支線飛機(jī),是我國(guó)“十五”規(guī)劃發(fā)展渦扇支線飛機(jī)高技術(shù)工程取得的重大成果,也是我國(guó)航空工業(yè)順應(yīng)經(jīng)濟(jì)全球化潮流,主動(dòng)參與國(guó)際合作,與世界民機(jī)制造業(yè)同步發(fā)展的良好開端。2005年2月,中巴合資公司向南方航空公司交付了合資生產(chǎn)的第6架ERJ145飛機(jī),飛機(jī)質(zhì)量、可靠性等得到用戶認(rèn)可。2005年3月,中巴合資公司又和中國(guó)東方航空集團(tuán)公司簽訂了ERJ145飛機(jī)購(gòu)銷合同。ERJ145系列飛機(jī)是專門為支線航空市場(chǎng)設(shè)計(jì)的,速度快航程長(zhǎng)性能良好;座艙內(nèi)噪聲小,乘坐舒適性好;價(jià)格低于同類飛機(jī);采用玻璃座艙等先進(jìn)的航電設(shè)備及輔助動(dòng)力系統(tǒng)(APU),提高了飛機(jī)的安全性能。全系列37座、44座、50座3個(gè)級(jí)別飛機(jī)的部件和系統(tǒng)通用性高達(dá)98%,簽派可靠性高。飛機(jī)客艙采用三聯(lián)座布局,設(shè)計(jì)合理,尾吊2臺(tái)羅爾斯·羅伊斯AE3007A系列高涵道比渦扇發(fā)動(dòng)機(jī),升限11278m,航速833852km/h,50座級(jí)ERJ45飛機(jī)基本型航程約2000km,延程型航程接近4000km,可基本覆蓋我國(guó)國(guó)內(nèi)所有航線。從1995年開始,支線飛機(jī)需求發(fā)生了迅速變化,發(fā)展至今,渦扇支線飛機(jī)的需求量已達(dá)整個(gè)支線飛機(jī)的80%,遠(yuǎn)遠(yuǎn)超過(guò)渦槳支線飛機(jī)。合資生產(chǎn)的ERJ45系列飛機(jī)是1995年以后投入市場(chǎng)的新產(chǎn)品,是當(dāng)今世界最先進(jìn)的渦扇支線飛機(jī)之一。ERJ45系列飛機(jī)已形成ERJ35(37座)、ERJ40(44座)、ERJ45(50座)3個(gè)座級(jí)10個(gè)型號(hào)的系列化、家族化產(chǎn)品,是世界唯一形成系列的50座級(jí)渦扇支線飛機(jī),深受用戶歡迎,已交付830多架,并取得中國(guó)CAAC美國(guó)FAA、歐洲JAA等適航證。當(dāng)前,國(guó)際合作發(fā)展民機(jī)已成為普遍模式。ERJ45渦扇支線飛機(jī)項(xiàng)目起點(diǎn)高、投資少、速度快、風(fēng)險(xiǎn)小,通過(guò)國(guó)際合作可掌握關(guān)鍵技術(shù)工藝和先進(jìn)管理方法,逐步實(shí)現(xiàn)掌握設(shè)計(jì)技術(shù)、擁有自主知識(shí)產(chǎn)權(quán)的目標(biāo),還可滿足我國(guó)航空運(yùn)輸發(fā)展的需要,在拉動(dòng)內(nèi)需中形成新的經(jīng)濟(jì)增長(zhǎng)點(diǎn),為西部大開發(fā)和客流量少或至今尚未開通航線的城市提供更適宜的交通工具。這一合作項(xiàng)目被視為南南合作的典范,具有重要的政治意義和經(jīng)濟(jì)意義,將為雙方帶來(lái)雙贏的結(jié)果,開辟了我國(guó)民用飛機(jī)發(fā)展的新篇章。(中國(guó)航空工業(yè)第二集團(tuán)公司科技委供稿)
-
C4烯烴制丙烯催化劑 2020-06-12
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-06-12
-
生物質(zhì)能的應(yīng)用工程 2020-06-12
-
我國(guó)甲醇工業(yè)現(xiàn)狀 2020-06-12
-
石油化工設(shè)備腐蝕與防護(hù)參考書十本免費(fèi)下載,絕版珍藏 2020-06-12
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡(jiǎn)介 2020-06-12
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-06-12
-
甲醇制芳烴研究進(jìn)展 2020-06-12
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-06-12
