電廠循環(huán)水供水系統(tǒng)事故水錘過(guò)程的仿真研究
- 期刊名字:供水技術(shù)
- 文件大小:473kb
- 論文作者:
- 作者單位:
- 更新時(shí)間:2020-11-10
- 下載次數(shù):次
第3卷第5期供水技術(shù)Vol.3 No.52009年10月WATER TECHNOL0GYOct. 2009電廠循環(huán)水供水系統(tǒng)事故水錘過(guò)程的仿真研究賁岳,高學(xué)貞,韓磊,張東文,鄭冠軍,侯付彬,王麗華(國(guó)核電力規(guī)劃設(shè)計(jì)研究院水務(wù)部,北京100080)摘要:針對(duì)某電廠循環(huán)水供水系統(tǒng)的特點(diǎn),應(yīng)用AFT Impulse"M4.0 動(dòng)態(tài)流體分析軟件,對(duì)系統(tǒng)事故停泵水力過(guò)渡過(guò)程進(jìn)行了計(jì)算機(jī)仿真,對(duì)泵出口閥不同關(guān)閥規(guī)律對(duì)應(yīng)的過(guò)渡過(guò)程進(jìn)行了比較分析,得出了較理想的關(guān)閥規(guī)律。仿真結(jié)果表明,最大水錘升壓發(fā)生在三泵并聯(lián)同時(shí)事故關(guān)閥,但此種情況發(fā)生概率較小,而停泵水錘概率較高,且關(guān)閥規(guī)律選擇不當(dāng)時(shí)對(duì)應(yīng)的工況壓力變化較大。經(jīng)計(jì)算機(jī)仿真計(jì)算得出的結(jié)論對(duì)提高電廠循環(huán)水系統(tǒng)的可靠性和運(yùn)行穩(wěn)定性具有一定的意義。關(guān)鍵詞:循環(huán)水 系統(tǒng);水 錘;仿真中圖分類號(hào): TK730. 4文獻(xiàn)標(biāo)志碼: A文 章編號(hào): 1673 - 9353(2009 )05 -0026 -04doi:10. 3969/j. issn. 1673 - 9353.2009. 05. 007Simulation on the transition process of accidental water hammerof circular water supply system in power plantBen Yue,Gao Xuezhen ,Han Lei,Zhang Dongwen,Zheng Guanjun,Hou Fubin,W ang Lihua( Department of Water Works ,State Nuclear Electric Power Planning Design andResearch Institute, Beijing 100080, China )Abstract: In accordance with the characteristic of circular water supply system in power plant,applying the dynamic fluid analysis soft of AFT Impulse' M 4. 0, computer simulation was made on thetransition process of accidental pump-stop. The transition process corresponding to diferent closing valveregulations was compared and perfect closing valve rules were obtained. The simulation results showedthat the maximal water hammer pressure arised from three parallel connection valves closingsimultaneously, but this occurred little than three parallel connection pumps stopped and the unaptclosing valve regulation could make water hammer pressure arise. The conclusion had important practicesignifcance to improve reliability and stability of circular water supply system in power plant.Key words: circular water supply system; water hammer; simulation對(duì)于電廠循環(huán)水系統(tǒng),系統(tǒng)管道的水錘分析設(shè)力,管道會(huì)爆裂。同時(shí)水錘的影響巨大,會(huì)破壞泵計(jì)尤為重要。在一般壓力供水管道系統(tǒng)中,為避免站閥門(mén)等設(shè)施,危害程度較大。事故的發(fā)生,通常在閥門(mén)]附近安裝緊急關(guān)閉閥,該閥筆者針對(duì)某電廠循環(huán)水系統(tǒng)的事故水錘進(jìn)行了的緊急關(guān)閉,會(huì)阻止液體的繼續(xù)輸送,避免其他事故仿真模擬,為確保系統(tǒng)的安全運(yùn)行,對(duì)系統(tǒng)進(jìn)行詳細(xì)的發(fā)生”。閥門(mén)的快速關(guān)閉,雖然解決了介質(zhì)的逆的過(guò)渡過(guò)程分析,并選擇合適的防護(hù)措施。系統(tǒng)中流問(wèn)題,但隨之而來(lái)會(huì)誘發(fā)水錘[12- 3。水錘使管道水泵選用軸流中國(guó)煤化I's,額定揚(yáng)程內(nèi)部流體壓力驟增,如果該壓力超過(guò)管道的設(shè)計(jì)壓為12.5 m,MHCNMH G頓定效率為●26●2009年10月賁岳,等:電廠循環(huán)水供水系統(tǒng)事故水錘過(guò)程的仿真研究第3卷第5期88%,機(jī)組轉(zhuǎn)動(dòng)慣量為7300kg●m',泵出口閥選用基本一致,均是從穩(wěn)態(tài)壓力降低后逐漸升高到一定可控液控蝶閥。壓力再波動(dòng)降低,直至為零。同時(shí)也可以看出隨著1事故停泵過(guò)渡過(guò)程計(jì)算機(jī)仿真關(guān)閥時(shí)間的延長(zhǎng),閥門(mén)后壓力變化幅度減小,在快關(guān)采用AFTImpulse'M4.0流體分析軟件對(duì)事故5s,慢關(guān)55s的工況下壓力變化幅度最小,僅升高水錘情況進(jìn)行了分析,結(jié)合該循環(huán)水供水系統(tǒng)的實(shí)到0. 164 MPa, 而快關(guān)2 s慢關(guān)6s和快關(guān)2 s慢關(guān)8際情況,分別對(duì)三泵并聯(lián)運(yùn)行中- -臺(tái)事故斷電停泵、s的工況下,閥門(mén)后壓力均升至0.18 MPa。雖然快兩臺(tái)同時(shí)事故停泵及三臺(tái)同時(shí)事故停泵的過(guò)渡過(guò)程關(guān)5s,慢關(guān)55s的工況下壓力變化幅度最小,但是進(jìn)行計(jì)算機(jī)仿真,得出過(guò)渡過(guò)程中的泵組最不利參從圖中可以看出,三種工況下隨著關(guān)閥時(shí)間的延長(zhǎng)數(shù)。對(duì)于事故水錘采取兩階段關(guān)閥進(jìn)行考察,即快水泵倒轉(zhuǎn)較嚴(yán)重,最大反轉(zhuǎn)速度分別是額定轉(zhuǎn)速的關(guān)75° ,慢關(guān)15°1.1,1.26和1.7倍,過(guò)大的反轉(zhuǎn)速度直接導(dǎo)致水泵1.1一臺(tái)事故斷電停泵的損壞,一般水泵允許反轉(zhuǎn)速度是額定轉(zhuǎn)速的1.2三泵并聯(lián)一- 泵事故停泵的計(jì)算機(jī)模擬結(jié)果如圖倍左右。因此,三泵并聯(lián)一臺(tái)事故停泵的工況下,閥1至圖3,從圖中可以看出關(guān)閥后壓力曲線變化趨勢(shì)門(mén)要在10s內(nèi)關(guān)閉,以保證水泵不被損壞。0.20 t800.15, 6C400.05of-2010 1s2010Time/seca.壓力變化泵轉(zhuǎn)速變化圖1快關(guān)2 s,慢關(guān)6 s時(shí)的仿真結(jié)果Fig.1 Results of simulation at 2 s fast close and 6 s slow close0.20 r100604C0.1020-01:-40515Time/secondsb.泵轉(zhuǎn)速變化圖2快關(guān)2s,慢關(guān)8s時(shí)的仿真結(jié)果Fig.2 Results of simulation at 2 s fast close and 8 s slow close1.2 兩泵同時(shí)事故斷電停泵度減小,15 s關(guān)閥時(shí)的壓力值即降為0.15 MPa。進(jìn)兩泵同時(shí)事故斷電停泵過(guò)渡過(guò)程的計(jì)算機(jī)仿真-步延長(zhǎng)關(guān)閥時(shí)間,水泵開(kāi)始出現(xiàn)倒轉(zhuǎn)情況,在快關(guān)結(jié)果如圖4、圖5所示。5s,慢關(guān)20s的工況下,壓力變化幅度增大,此時(shí)閥從圖4可以看出,15 s內(nèi)將閥門(mén)關(guān)閉,水泵不會(huì)門(mén)后壓力可升高到0.171 MPa,水泵最大反轉(zhuǎn)速度出現(xiàn)倒轉(zhuǎn)情況,但過(guò)短的關(guān)閥時(shí)間導(dǎo)致閥門(mén)后壓力是額定轉(zhuǎn)速的1.18倍。因此,三泵并聯(lián)兩泵事故停驟然升高,可達(dá)到1.08 MPa。試驗(yàn)中發(fā)現(xiàn),適當(dāng)延泵的情況下,中國(guó)煤化工曼關(guān)10s為長(zhǎng)關(guān)閥時(shí)間,例如快關(guān)5 s,慢關(guān)10s時(shí),壓力升高幅宜。YHCNM HG.27.第3卷第5期供水技術(shù)2009年10月0.20↑10080多500.15 I40-0.10of-200.05-40-60--80L2006(8(0.00406CTime/secondsa.壓力變化b.泵轉(zhuǎn)速變化圖3快關(guān)5 s,慢關(guān)55 s時(shí)的仿真結(jié)果Fig.3 Results of simulation at5 s fast close and 55 s slow close1.580 |g 1.050 F言0.552(1015圖4快關(guān)2s,慢關(guān)6s時(shí)的仿真結(jié)果Fig.4 Results of simulation at 2 s fast close and 6 s slow close0.20 t00 r0.15-soA. 20? 0.05304(Time/sconds圖5 快關(guān)5 s,慢關(guān)20 s時(shí)的仿真結(jié)果Fig.5 Results of simulation at5 s fast close and 20 s slow close1.3 三泵同時(shí)事故斷電停泵力分別為0.148,0. 156和0.167 MPa,而三種工況兩階段關(guān)閥壓力變化情況如圖6至圖8所示。下泵開(kāi)始倒轉(zhuǎn)的時(shí)間分別為41.1,41.8和42.4 s,考察了4種工況下的壓力變化:①快關(guān)5 s,慢關(guān)55最大反轉(zhuǎn)速度分別是額定轉(zhuǎn)速的1. 138,1.14和1.s;②快關(guān)10 s,慢關(guān)50 s;③快關(guān)15 s,慢關(guān)45 s;④143倍。適當(dāng)延長(zhǎng)關(guān)閥時(shí)間,如圖8可知,快關(guān)10快關(guān)10s,慢關(guān)90s。從圖7至圖9可以看出,控制s,慢關(guān)90s的中國(guó)煤花土0.122 MPe,閥門(mén)關(guān)閉時(shí)間為60 s,隨著慢關(guān)時(shí)間的減少,壓力升比60s最佳工CHCNMH G .降幅度增強(qiáng),慢關(guān)時(shí)間為55,50和45s時(shí)的最大壓一步降低了水錘止力的地告.28.2009年10月賁岳,等:電廠 循環(huán)水供水系統(tǒng)事故水錘過(guò)程的仿真研究第3卷第5期0.20 t100卜8C0.15 |600.10 t40t 20(02080-2054(Time/sa.壓力變化、lime/secondsb.泵轉(zhuǎn)速變化圖6快關(guān)5 s,慢關(guān)55 s時(shí)的仿真結(jié)果Fig.6 Resuls of simulation at 5 s fast close and s5 s slow elose100E 0.150.10i 0.0250。Time/seconds圖7快關(guān) 15 s,慢關(guān)45 s時(shí)的仿真結(jié)果Fig.7 Reults of simulation at 15 s fast elose and 45 s slow closeg 0.20t0.154f尋0.055150Time/seconds2.0圖8快關(guān)10s,慢關(guān)90 s工況下的壓力變化曲線圖9三泵并聯(lián)瞬間關(guān)閥壓力變化 曲線Fig.8 Pressure variation at 10 s fast close and 90 s slow closeFig.9 Instaant closed valve pressure variation curve at three1.4三泵并聯(lián)突然關(guān)閥parallel connection pumps work condition三泵并聯(lián)閥門(mén)]突然損壞關(guān)閉的壓力變化情況如②多泵并聯(lián)使用時(shí),其中幾臺(tái)泵事故停泵時(shí)圖9所示,從圖可知閥i ]的瞬時(shí)關(guān)閉,造成管道內(nèi)壓要合理控制關(guān)閥時(shí)間,以防止水泵過(guò)量倒轉(zhuǎn)損壞水力變化增幅較大,最大壓力為4.54 MPa。而實(shí)際上泵。多泵同時(shí)事故停泵時(shí)水錘壓力較大,適當(dāng)延長(zhǎng)閥門(mén)不可能突然關(guān)閉,總有一定的歷時(shí),其水錘現(xiàn)象關(guān)閥時(shí)間可以減弱水錘壓力波動(dòng)值。比突然關(guān)閉情況要復(fù)雜得多,但上述水錘波傳播和③突然關(guān)閥時(shí)壓力驟然升高,對(duì)系統(tǒng)損壞較反射的規(guī)律仍然適用。大,因此閥門(mén)要經(jīng)常檢修,以防止關(guān)閥水錘的發(fā)生。2結(jié)論參考文獻(xiàn):①水泵出口閥的關(guān)閉特性直接影響管道系統(tǒng)[1] Wylie EBStreeler VL.瞬變流[M].清華大學(xué)流體傳中的水錘壓力,可以通過(guò)合理確定水泵出口可控閥動(dòng)與控制教研組譯北京.水利水由出版社,1987.的關(guān)閥程序有效地控制事故停泵水力過(guò)渡過(guò)程,避中國(guó)煤化工免系統(tǒng)中出現(xiàn)過(guò)大或過(guò)小的水錘壓力。收稿日期:20MYHCNMH G●29.
-
C4烯烴制丙烯催化劑 2020-11-10
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-11-10
-
生物質(zhì)能的應(yīng)用工程 2020-11-10
-
我國(guó)甲醇工業(yè)現(xiàn)狀 2020-11-10
-
石油化工設(shè)備腐蝕與防護(hù)參考書(shū)十本免費(fèi)下載,絕版珍藏 2020-11-10
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡(jiǎn)介 2020-11-10
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-11-10
-
甲醇制芳烴研究進(jìn)展 2020-11-10
-
精甲醇及MTO級(jí)甲醇精餾工藝技術(shù)進(jìn)展 2020-11-10




