水冷壁氣化爐變工況溫度及熱應(yīng)力分析
- 期刊名字:化工學(xué)報
- 文件大小:281kb
- 論文作者:
- 作者單位:
- 更新時間:2020-07-12
- 下載次數(shù):次
.第60卷第10期化工學(xué)報Vol. 60 No. 102009年10月CIESC JournalOctober 2009研究論文 名水冷壁氣化爐變工況溫度及熱應(yīng)力分析林偉寧,粱欽鋒,劉海峰,于廣鎖,龔欣(華東理工大學(xué)煤氣化教育部重點實驗室,上海200237)摘要:在實驗室小型水冷壁氣化爐上進行變工況氣化試驗,建立氣化爐水冷壁的二維傳熱和應(yīng)力模型,對氣化爐變工況時水冷璧及淹層中的溫度及應(yīng)力變化進行了模擬計算。模擬結(jié)果表明:水冷壁及渣層中的周向應(yīng)力及徑向應(yīng)力均隨溫度的升高而增大,而周向應(yīng)力在數(shù)值上相對較大。在清層碳化硅層接觸面上,隨指定點與水冷管及渣釘?shù)木嚯x逐漸增大,等效應(yīng)力迅速增大后趨于穩(wěn)定;不同材料中的等效應(yīng)力差異顯著。關(guān)鍵詞;氣流床氣化爐;水冷壁;渣層;熱應(yīng)力中圖分類號: TQ 054文獻標(biāo)識碼: A文章編號: 0438-1157 (2009) 10- 2568-08Temperature and thermal stress analysis in membranewall gasifier under varied work conditionsLIN Weining, LIANG Qinfeng, LIU Haifeng, YU Guangsuo, GONG Xin(Key Laboratory of Coal Gasification of Ministry of Education,East China University of Science and Technology, Shanghai 200237 . China)Abstract: Gasification experiment was performed in a bench- scale membrane wall entrained- flow gasifierand the work conditions were altered during the process. A two dimensional model for the membrane wallwas established to simulate the temperature and thermal stress changes. Results indicated that both thecircumferential and the radial stress increases with the temperature rising in the membrane wall and slaglayer, and the circumferential stress is relatively greater than the radial one. On the interface of slag andsilicon carbide layer, the equivalent stress increases rapidly and then reaches to a steady state with thedistance from the selected node to the water tube and the slag nail. Significant difference in the equivalentstress was observed for different materials.Key words: entrained- flow gasifier; membrane wall; slag layer; thermal stress過程中產(chǎn)生的大量熔渣,附著在氣化爐內(nèi)壁上,形引| 言成具有較大熱阻的隔熱層,從而對爐體起到保護作氣流床煤氣化技術(shù)具備煤種適應(yīng)性強、碳轉(zhuǎn)化用,使得氣化裝置可以長周期運轉(zhuǎn)。率高、易于大型化等優(yōu)勢(國],已成為煤基大容量、但在工業(yè)實際操作過程中,氣化爐變工況尤其高效潔凈的燃氣與合成氣制備的首選技術(shù),得到了是停車后,爐內(nèi)壁附著渣層可能出現(xiàn)開裂甚至脫落廣泛應(yīng)用。水冷壁氣化爐作為氣流床氣化技術(shù)的重的現(xiàn)象,這將導(dǎo)致氣化爐水冷壁的局部溫度過高,要分支,其核心思想為“以渣抗渣”,即利用氣化縮短氣化爐內(nèi)件的使用壽命。目前普遍認為,這是2009-04-10收到初稿,2009 -06 - 29收到修改稿。Received date: 2009-04-10.聯(lián)系人:于廣鎖。第一作者:林偉寧(1981-), 男,博士研中國煤化工-5yu@ecust. edu. cn究生。lional Natural Science基金項目:國家自然科學(xué)基金項目(20876048); 國家重點若Foundti:YHC N M H Gional Basic Reseatch礎(chǔ)研究發(fā)展計劃項目(2004CB217703); 新世紀(jì)優(yōu)秀人才支持計劃Program of China ( 2004CB217703) and the Program for New項目(NCET 060416)。Century Exellent Talents in University (NCET-06-0416).第10期林偉寧等:水冷壁氣化爐變工況溫度及熱應(yīng)力分析, 2569由于渣層及其接觸的耐火材料的熱膨脹系數(shù)存在差異,溫度的改變將引起較大的熱應(yīng)力,當(dāng)熱應(yīng)力超vapour過渣層與耐火材料的附著強度時,渣層就會開裂、脫落]。因此,對氣化爐變工況引起的熱應(yīng)力進行研究具有重要意義。Gasser 等[5] 運用有限元法對15不同壓力載荷下耐火襯里中的應(yīng)力分布進行了分析預(yù)測。周俊虎等[6]建立二維鍋爐渣層傳熱模型,對不同工況下渣層熱應(yīng)力進行了穩(wěn)態(tài)模擬計算,并以其差值表征變工況引起的熱應(yīng)力。然而,氣化爐變slagT,sysgasLJ14工況是瞬態(tài)過程,上述方法不能準(zhǔn)確地描述水冷壁17及渣層中熱應(yīng)力的變化過程。因此本文在試驗的基:礎(chǔ)上,建立水冷壁及渣層的二維傳熱與應(yīng)力數(shù)學(xué)模圖1水冷壁 氣化爐氣化試驗流程圖型,采用有限元法對氣化爐變工況下溫度及熱應(yīng)力Fig.1 Flow diagram of gasification of的變化情況進行模擬計算。membrane wall gasifier1氣化試驗方法1-gasifier; 2- drum; 3-circulating pump;4-heat exchanger; 5, 11- flowmeter; 6- -diesel oil vessel;本文基于實驗室小型水冷壁氣流床氣化爐,采7- metering pump; 8- -ash-oil slurry vessel;用油灰漿(柴油與煤灰的質(zhì)量比為7: 3)和氧氣9-singlescrew pump; 10- -oxygen eylinder;12- nozzle; 13- -argon eylinder; 14- slag lock;混合進料,進行氣化渣層沉積試驗,試驗流程如圖15- -thermocouple; 16- -data acquisition module; 17- computer1所示。水冷壁氣化爐分為上錐段、直簡段和下錐段,其中上、下錐段采用盤管結(jié)構(gòu),直筒段采用列1200管結(jié)構(gòu)。水冷管上按一定間距焊接渣釘,管間采用鰭片連接。水冷管和鰭片上依次澆鑄耐火材料氧化900鋁和碳化硅,其厚度分別為25 mm和10 mm。水| preheatingAOS fedingI cooling冷壁通過集箱與汽包及換熱器相連,構(gòu)成冷卻水循600 t環(huán)系統(tǒng)。去離子水經(jīng)泵強制循環(huán)。氣化爐運行時采用單噴嘴頂部進料,燃料油、油灰漿由計量泵輸送300經(jīng)噴嘴進入氣化爐。噴嘴采用三通道設(shè)計,中心通道走油灰漿,環(huán)隙通道走柴油,外側(cè)通道走氧氣。60180240氣化過程中產(chǎn)生的合成氣由底部管道進人激冷室,time/min然后經(jīng)煙氣管道放空。爐體上裝有K型熱電偶以圖2渣層表面溫度 時間曲線測量氣化爐內(nèi)的渣層表面溫度,溫度信號經(jīng)研華公.Fig.2 Temperature time curve of surface of slag layer司生產(chǎn)的ADAM-4018模塊進人計算機,由工控組中,冷卻水循環(huán)系統(tǒng)中的流量保持恒定,上錐段為態(tài)軟件MCGS顯示并存儲。本試驗分為3個階段。第一階段,氣化妒點火0.2m'●h-',直簡段與下錐段為0.65 m'●b-'.成功后采用柴油和氧氣混合進料對爐膛進行預(yù)熱,氣化爐內(nèi)渣層表面溫度的變化情況如圖2所示。渣層表面溫度由23C迅速升高至約740C.第二階2數(shù)學(xué)模型段,切人油灰漿,在爐膛內(nèi)進行氣化掛渣,并通過調(diào)節(jié)柴油和氧氣流量,保持爐膛內(nèi)的還原性氣氛。.氣化爐變工況時,水冷壁中溫度變化是瞬態(tài)傳本階段中,渣層表面溫度先迅速升高后趨于穩(wěn)定,熱過中國煤化工其進行瞬態(tài)熱分最終維持在約1150C.第三階段,停車操作,采析。|YHC NMH G內(nèi),忽略其曲率及用氬氣吹掃并保持冷卻水循環(huán)以使?fàn)t體降溫,渣層軸向傳熱,并根據(jù)對稱原則,在直角坐標(biāo)系中建立表面溫度在60 min內(nèi)降低至約353C.試驗過程水冷壁直簡段二維模型。經(jīng)簡化后,該模型由水冷●2570●化工學(xué)報第60卷管、鰭片、渣釘、氧化鋁層、碳化硅層及渣層構(gòu)CD成,見圖3。其中,水冷管、鰭片及渣釘?shù)牟馁|(zhì)均為不銹鋼。水冷壁各材料的物性參數(shù)如表16]、表2[”、表3189]、表401]所示。在模擬計算過程中引入如下假設(shè):(1)渣層全部為固定層,其表面溫度均勻分布;(2)各材料結(jié)合緊密,僅考慮其間的熱傳導(dǎo);(3)水冷管內(nèi)壁與冷卻水的對流傳熱系數(shù)沿水冷管內(nèi)壁四周均布,水溫均勻且保持恒定;(4)與熱應(yīng)力相比,氣化產(chǎn)生的合成氣對水冷壁的正壓力非常小,故忽略不計;圖3水冷壁計算模 型示意圖(5)水冷壁模型中各材料質(zhì)地均勻,各向同F(xiàn)ig. 3 Schematic view of membrane wall model性,且在變工況時僅發(fā)生彈性形變。1- watercooled tube; 2- fin; 3- -slag nail;基于水冷壁結(jié)構(gòu)特點及上述假設(shè),則平面溫度4- alumina layer; 5- slion carbide layer; 6-slag layer場的微分方程為1213]表1不銹鋼物性參數(shù)Table 1 Properties of stainless steelTemperature, T/CProperties100300500conductivity, k/w.m-1●C-113.2614.4617.2420. 8423.07Young’s modulus, E/GPa200.38189. 28.171. 42160.71146. 54poisson ratio, μ0.29expansion coefficient, a/C -116. 3X10-*17X10- -后18. 76X10-*20. 82x10-621. 94X 10-* .specific bheat,c/J.kg-1.c-1456. 78491. 07535. 71555. 35571. 42density. p/kg. m~3803表2氧化鋁物性參數(shù)Table 2 Properties of aluminaConductivity,k/W.m 1.C-1Young's modulus, PoissonExpansion coefficient, Specific heat,Density,100C300C 500C 700C 900CE/GParatio, μa/C-1c/J.kg-'●它- p/kg.m-s28. 923.8 18. 613.5 8. 33700.247.2X10-01087. 13980裹3碳化硅物性參數(shù)Table 3 Properties of silicon carbideConductivity.k/w.m-I●C-1Young' s modulus, PoissonExpansion cofficient Specific heat,Density,20C300C 600C 900C 1200Cc/J.kg-1●C-1 p/kg. m-'35.13 29.95 24.40 18.85 13. 304100.143.1X10-6803100表4渣層物性參數(shù)Table 4 Properties of中國煤化工Conductivity.k/W.m '. C-1Young's modulus,PoissonTYHCNMH G*_p/kg. m-3400C 600 800C 1000C 1200C”1” “1.782. 252.73 3. 2020.50.28. 0X 10-65601980第10期林偉寧等:水冷壁氣化爐變工況溫度及熱應(yīng)力分析●2571 ●(影+號)+a=r架(1)平面應(yīng)力和應(yīng)變各分量的關(guān)系式為為得到上述微分方程的唯一解,必須附加邊界0=二[(e-0) +u(e, -ep)]|條件和初始條件,統(tǒng)稱為定解條件,與微分方程耦o,=二[(s, -5o) +u(e,-eo)](4)合求解。本模型中,在渣層表面(AB)上施加如.圖2所示的溫度-時間載荷,水冷管內(nèi)壁(EF)上功= 2(1+2%施加其與冷卻水的強制對流載荷,鰭片表面平面應(yīng)變和位移關(guān)系的向量形式為(GH)和水冷管外表面(HI)上施加其與空氣的a對流載荷;水冷壁及渣層的初始溫度均勻分布,為23C。{&}= e, =(5)平面應(yīng)力場的微分方程及其邊界條件分別為式0+ |(2)和式(3)應(yīng)用伽遼金法對微分方程式(1)和式(2)進3. +x +x=put2(2)行變分計算,并引用格林公式將區(qū)域上的面積積分0+登+Y=p邵與邊界上的線性積分聯(lián)系起來,可得到溫度場有限元基本方程式(6)及位移場有限元基本方程式Q =o,l+ tyxm l(3)(7)[13) .Q, =o,m +txl ,JW.器-。[(01+0鄂)一q.w.+pcW.留]ardy-_.*w. nds (in .2..(6)2JD-D。(=z[(器+鄂)-(a+mosT]%E_(」u\aw.Jπ +20+(器+歲)歲-xW, +pW.}drdy-中. W.Q,ds=0(i= 1,2.,..n)(7)歌-D。{導(dǎo)[(影+p鄂)-1+)os]歲+年的(最+號)要-YW, + pW.和drdy-o W,Q,ds=0直接求解式(6) 和式(7)十分困難,因此采1200用有限元法把模型劃分為4106個四邊形單元和4254個節(jié)點,并把連續(xù)的溫度場及位移場離散到00 t各節(jié)點上,采用直接耦合法“4]對溫度和應(yīng)力進行求解計算。003結(jié)果與討論node J300node Knode L3.1 水冷壁中的溫度變化node M選取模型中點J、K、L.M作為研究對象612180240(見圖3),分別對各點溫度在變工況時的變化情況time/min進行計算分析,計算結(jié)果如圖4所示。點J位于渣圖4點JK、L、M溫度-時間曲線Fig. 4 Temperaturetime curve of node J, K,L and M層表面,該點溫度與施加的溫度載荷相同,最高溫度為1150C.點K位于渣層-碳化硅層接觸面,由601C.與點J相比,點K、L、M的溫度極值點于渣層的熱導(dǎo)率很小,具有良好的隔熱作用,因的出現(xiàn)時間相對滯后。此,在整個變工況尤其升溫過程中,點K的溫度3.2中國煤化工比渣層表面溫度低得多,最高溫度僅為884C.點CNMH G在x軸方向和yL、M分別位于碳化硅層-氧化鋁層接觸面以及氧軸方向的應(yīng)力分量隨時間的變化曲線分別如圖5和化鋁層鰭片接觸面,其最高溫度分別為812C和圖6所示。, 2572 ●化工學(xué)報第60卷0r-100-600。slaglayersiC layer易-200-1200-300-18006208060180240time/min(2) node J(b) node K-800-v Al2O; layerofin.百-1600。siC layer口Al2O3 layer號-1800-2400-32000120-3000(C) node L .(d) node M圖5各點x軸方向熱應(yīng)力-時間曲線Fig. 5 Thermal stress time curves of nodes for r-direction由圖5可見,各點x軸方向的應(yīng)力分量(周向應(yīng)力的極值為1.24 MPa,碳化硅層中點K處則為應(yīng)力)均經(jīng)歷了增大-穩(wěn)定-減小的過程,其方向為2. 52 MPa;碳化硅層中點L處徑向應(yīng)力的極值為x軸負向。結(jié)合各點的溫度變化后發(fā)現(xiàn),溫度升高56.9 MPa,氧化鋁層中點L處的徑向應(yīng)力相對較或降低時,周向應(yīng)力隨之增大或減小;溫度趨于穩(wěn)大,其極值為63.4 MPa;氧化鋁層和鰭片中點M定時,周向應(yīng)力亦趨于穩(wěn)定。點J的周向應(yīng)力極處徑向應(yīng)力差異較小,其極值分別為61.3 MPa和值為257.6 MPa.點K、L. M均位于兩種材料的64. 7 MPa.接觸面,而在不同材料中同一位置處的周向應(yīng)力存根據(jù)模擬結(jié)果可知,熱應(yīng)力隨溫度的升高而增在較大差異,且遠離渣層表面的材料中的周向應(yīng)力大。因此,在保證氣化裝置正常運行的情況下降低相對較大。渣層中點K處周向應(yīng)力的極值為196. 8操作溫度能夠有效降低熱應(yīng)力,從而減少氣化爐內(nèi)MPa,碳化硅層中點K處為1618 MPa;碳化硅層渣層開裂及脫落現(xiàn)象。中點L處周向應(yīng)力的極值為1277 MPa,氧化鋁層3.3等效應(yīng)力分布中點L處為2920MPa;氧化鋁層中點M處周向應(yīng)力的極值為1640 MPa,鰭片中點M處為選取路徑CD (即渣層碳化硅層接觸面)及2550 MPa。.路徑BG.并根據(jù)Mises屈服準(zhǔn)則,應(yīng)用等效應(yīng)力由圖6可見,各點在y軸方向的應(yīng)力分量(徑分別中國煤化工進行描述。等效向應(yīng)力)亦呈現(xiàn)出增大-穩(wěn)定減小的趨勢,但與周應(yīng)力IYHCNMHG向應(yīng)力相比,各點的徑向應(yīng)力相對較小。點J的徑向應(yīng)力極值僅為0. 12 MPa;渣層中點K處徑向a=√(ao-g)+(a,-)+(a一)門(8) .第10期林偉寧等:水冷壁氣化爐變工況退度及熱應(yīng)力分析●2573●0.150.10)_2號0.05。slag layer。SiClayer6012018024062018time/min(a) node J(b) node K805040。siC layer20|v Al;O3layv Al2O, layera fintimne/min(2) node L(d)node M圖6各點y軸方向熱應(yīng)力時間曲線Fig.6 Thermal stress time curves of nodes for y diretion2003000Al;O, layer goou160}E 200siC layer140slag layer0.010.020.03x-direction/m0.01 0.02 0.03 0.04 0.05圖7路徑CD 上等效應(yīng)力分布曲線y-direction/mFig7 Equivalent stress distribution curve of path C-D圖8路徑BG上等效應(yīng)力分布曲線Fig.8 Equivalent stres dstribtion curve of path BG當(dāng)渣層表面溫度達到1500C時,兩條路徑上的等效應(yīng)力分布分別如圖7和圖8所示?;鑼咏佑|面上,遠離水冷管及渣釘處的等效應(yīng)力由于水冷管及渣釘?shù)挠绊?,渣?碳化硅層接相對較大,此處的渣層在變工況過程中更易開裂或觸面上的a并非均勻分布,而是呈現(xiàn)先增大后趨于脫落中國煤化工之間的距離不宜穩(wěn)定的趨勢(見圖7)。本模型中,x軸方向大于過大.CHCNMHG0.03m后,水冷管及渣釘對渣層碳化硅層接觸面由圖8可見,路徑BG上不同材料中的F差異上石的影響不再明顯。以上結(jié)果表明,在渣層-碳十分明顯,材料接觸面處存在階躍。面相同材料2574●化工學(xué)報第60卷中,隨該點與渣層表面距離的增大,即溫度的降o,, a,, y應(yīng)力分量,Pa低,于逐漸減小。周俊虎等[f]對鍋爐水冷壁渣層熱aJ. aJ. 2J-變分算符at'gu'應(yīng)力的模擬計算中曾得到相似的結(jié)果。References4結(jié)論1] Gong Xin (龔欣), Guo Xiaolei (郭曉鐳),Dai Zhenghua本文采用油灰漿進料在實驗室小型水冷壁氣化(代正華),Yu Zunhong (于遵宏),Han Fei (韓飛),爐中進行了氣化試驗,并建立水冷壁及渣層的二維Zhao Ruitong (趙瑞同), Lu Chuanlei (目傳磊),Lu傳熱與應(yīng)力數(shù)學(xué)模型,采用有限元法對氣化爐變工Wenxue (路文學(xué)). New-type gasification technology ofpressurized entrained-low for pulverized coal. Modern況下溫度及熱應(yīng)力進行了瞬態(tài)分析,結(jié)論如下。Chemical Industry (現(xiàn)代化工),2005, 25 (3): 51-54(1)變工況時水冷壁中溫度發(fā)生變化,熱應(yīng)力[2] Yu Guangsuo (于廣鎖),Niu Miaoren (牛苗任),Wang亦隨之改變。溫度升高或降低時,選取各點的周向Yitei (王亦飛),Liang Qinfeng (梁欽鋒),Yu Zunhong應(yīng)力隨之增大或減小;溫度趨于穩(wěn)定時,周向應(yīng)力(于遵宏). Application status and development tendency of亦趨于穩(wěn)定。不同材料中同一點處的周向應(yīng)力存在coal entrained-bed gasification. Modern Chemical Industry(現(xiàn)代化工),2004, 24 (5): 23-26差異,且遠離渣層表面的材料中的周向應(yīng)力相對較[3] Steinberg Meyer, Cheng Hsing C. Modern and prospective大。與周向應(yīng)力相比,各點的徑向應(yīng)力在變工況時technologies for hydrogen production from fossil fuels.呈現(xiàn)出相似的變化趨勢,但其值相對較小。International Journal of Hydrogen Energy, 1989, 14(2) 選取路徑CD (即渣層碳化硅層接觸面)(11); 797-820及路徑BG,根據(jù)Mises屈服準(zhǔn)則,應(yīng)用等效應(yīng)力[4]Ana Zbogar, Flemming Frandsen, Peter Arendt Jensen,Peter Glarborg. Shedding of ash deposits. Progress in分別對兩條路徑上的瞬時應(yīng)力分布進行描述。結(jié)果Energy and Combustion Science, 2009, 35; 31-56表明,在渣層-碳化硅層接觸面上,遠離水冷管及[5] Gasser A, Boisse P, Rousseau J, Duthillet Y.渣釘處的等效應(yīng)力相對較大,此處的渣層在變工況Thermomechanical behavior analysis and simulation of steel/時更易開裂或脫落。不同材料中的于差異十分明refractory composite linings. Composites Science andTechnology, 2001, 61; 2095-2100顯,材料接觸面處存在階躍。而相同材料中,隨溫[6Mustafa Tparli, Faruk Sen, Osman Culha, Erdal Celik.度的降低,e逐漸減小。Thermal stres analysis of HVOF sprayed WC-Co/NiAImulilayer coatings on stainless steel substrate using finiteelement methods. Materials Processing Technology, 2007.c-- -比熱容,J.kg-1.C-1190; 26-32D-一平面溫度 場的定義域[7] Liu Hongbing, Tao Jjie, Gauteu Yoann, Zhang Pingze,Xu Jiang. Simulation of thermal stresses in SiCAI2O3E--彈性模量, GPacomposite tritium penetration barrier by finite element節(jié)點編號.analysis. Materials and Design, 2009, 30 ( 8 );k--熱導(dǎo)率, W.m'●C-12785-2790l, m--邊界法線方向與工、y軸夾角[8] Dimitrjevie M, Posarac M, Majstorovic J, Volkovn-物體邊界 的外法線向量Husovic T, Matovic B. Behavior of silicon carbide/Q,Q,- - -邊界上面力均布載荷分量,Pacordierite composite material after cyclic thermal shock.q.一材料內(nèi)熱源強度,W. m-3Ceramics International, 2009,35; 1077-1081T一溫度,C9] Wu Qingren (吳滑仁), Wen Bixuan (文璧服). Studies ont--時間,stemperature dependence of thermal conductivity and linearexpansion for SiC material. Journal of South Chinau, v-彈性位移分量,mUniversity of Technology: Natural Science(華南理工大學(xué)W-- -權(quán)函數(shù)學(xué)報:自然科學(xué)版),1996, 24 (3); 11-15x, Y- -坐標(biāo)載荷分量[10]Zhou Iunhu (雁俊虎). Yane Weijuan (楊衛(wèi)娟)。Liu熱膨脹系數(shù),C-1中國煤化工(周志軍), Cao Xinyu物體邊界e, e,, y-應(yīng)變分量,mHC N M H Grrmal steoetmal stress of slag onwaur tuveLredtcu uy UUeE Iuou sIL Journal of Chemicalp--泊松比Industry and Enginering (China)(化工學(xué) 報),2003, 54p- -密度,kg.m-312)。1678-1682第10期林偉寧等:水冷壁氣化爐變工況溫度及熱應(yīng)力分析●2575●[11] Ana Zbogar, Flemming J Frandsen, Peter Arendt Jensen,[14] Wang Yufei, Yang Zhenguo. Finite element analysis ofPeter Glarborg. Heat transfer in ash deposits: A modelingresidual thermal stress in ceramic-lined composite pipetool-box Progress in Energy and Combustion Science,prepared by centifugal-SHS. Materials Science and2005, 31; 371-421EngineeringA, 2007, 460/461; 130-134[12] Li Weite (李維特),Huang Baohai (黃保海),Bi Zhongbo [15] Gong Jun (龔俊), Lang Fuyuan (郎福元),Wang Min(畢仲波)。Theoretical Analysis and Application of Thermal(王珉),Li Jianbua (李建華), Liu Zhan (劉展). MixedStress Beiing: China Elecric Power Press, 2004mode fracture crteria based on unified strength theory.[13] Kong Xiangqian (孔祥謙),F(xiàn)inite Element Analysis ofJournal of Mechanical Strength (機械強度),1995,2:Thermal Stress (熱應(yīng)力有限單元法分析)。Shanghai;(3): 347-351Shanghai Jjiao Tong University Press, 1999中國煤化工MYHCNMHG
-
C4烯烴制丙烯催化劑 2020-07-12
-
煤基聚乙醇酸技術(shù)進展 2020-07-12
-
生物質(zhì)能的應(yīng)用工程 2020-07-12
-
我國甲醇工業(yè)現(xiàn)狀 2020-07-12
-
石油化工設(shè)備腐蝕與防護參考書十本免費下載,絕版珍藏 2020-07-12
-
四噴嘴水煤漿氣化爐工業(yè)應(yīng)用情況簡介 2020-07-12
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-07-12
-
甲醇制芳烴研究進展 2020-07-12
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進展 2020-07-12
