論文簡(jiǎn)介
第61卷第4期化工學(xué)報(bào)VoL.61 No.42010年4月CIESC JournalApril 2010研究論文貧帶路徑約束的聚烯烴牌號(hào)切換操作優(yōu)化方法9333999939費(fèi)正順,胡斌,葉魯彬,鄭平友,梁軍(浙江大學(xué)工業(yè)控制研究所,工業(yè)控制技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,浙江杭州310027)摘要:產(chǎn)品多樣化需求使得聚烯烴生產(chǎn)過(guò)程中經(jīng)常需要進(jìn)行牌號(hào)切換操作。以往關(guān)于牌號(hào)切換優(yōu)化的研究大多只關(guān)心切換過(guò)程結(jié)束后聚合物質(zhì)址指標(biāo)是否達(dá)到目標(biāo)牌號(hào)值,對(duì)過(guò)渡過(guò)程中質(zhì)最指標(biāo)及狀態(tài)變量的波動(dòng)情況缺少關(guān)注,而過(guò)程的波動(dòng)會(huì)影響到最終產(chǎn)物的質(zhì)最性質(zhì)和操作平穩(wěn)性。為此,本文以聚乙烯氣相流化床反應(yīng)器為對(duì)象,通過(guò)在牌號(hào)切換優(yōu)化命題中加入關(guān)于熔融指數(shù)等的路徑約束,防止過(guò)渡過(guò)程中的狀態(tài)變量劇烈波動(dòng)影響聚合物樹脂質(zhì)量。為求解此類帶路徑約束的動(dòng)態(tài)優(yōu)化問(wèn)題,對(duì)常規(guī)的控制變最參數(shù)化方法進(jìn)行了改進(jìn),通過(guò)求解微分代數(shù)方程(DAE 方程)將路徑約束轉(zhuǎn)化為控制變量約束。仿真結(jié)果表明,加人路徑約束可以有效避免牌號(hào)切換中變量的劇烈波動(dòng),增強(qiáng)過(guò)程平穩(wěn)性。關(guān)鍵詞:聚合反應(yīng);牌號(hào)切換:控制變量參數(shù)化;路徑約束中團(tuán)分類號(hào): TP 277文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào): 0438-1157 (2010) 04-0893-08Optimal grade transition of polymerization process with path constraintsFEI Zhengshun, HU Bin, YE Lubin, ZHENG Pingyou, LIANG Jun(State Key Laboralory of Industrial Control Technology. Institute of Industrial Control ,Zhejiang University, Hangzhou 310027,Zhejiang, China)Abstract: To meet a demand for various polymer products, grade transitions are frequently required in thepolymerization process. The recent studies for grade transition optimization mostly focused on adjusting thequality specifications to target values. However, the variations on quality specifications and state variablesduring the grade transition will greatly affect the operation stability of the system and the productqualities. In this study, the authors proposed a simple and effective approach to alleviate the fluctuationsduring grade transition by adding path constraints to the optimization structure of grade transition in a gas-phase fluidized bed reactor for polyethylene. The path constraints were transformed to control variableconstraints by solving the differential algebraic equation, which significantly improves the traditionalcontrol vector parameterization method to solve dynamic optimization problems with path constraints. Thesimulation results confirm the effectiveness of the proposed approach to enhance the operation stbility.Key words: polymerization; grade transition; control vector parameterization; path constraints2009-10-21收到初稿,2009- 12-03收到修改稿。Received date; 2009-10-21.聯(lián)系人:架軍。第一作者:費(fèi)正順(1984-),男,博士研Corresponding antbor: Prof, LIANG Jun, jliang @究生。ipe. zju edu. cn基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(60574047); 國(guó)家高技術(shù)Foundation item: supported by the National Natural Science研究發(fā)展計(jì)劃項(xiàng)目(2007AA04Z168, 2009AA04Z154); 教有部博Foundation of Ching ( 60574047),the High-tech Research and士點(diǎn)基金項(xiàng)目(20050335018)。Development Program of Caina (2007AA04Z168, 2009AA04Z154) andthe Doctorate Foundation of the State Education Ministry of China(20050335018).●894●化工學(xué)報(bào)第61卷操作點(diǎn)之間的最優(yōu)時(shí)變操作軌跡。引| 言上述關(guān)于牌號(hào)切換問(wèn)題的研究大多僅限于關(guān)心聚烯烴樹脂通常在聚合反應(yīng)器中進(jìn)行生產(chǎn),不過(guò)渡過(guò)程結(jié)束后質(zhì)量指標(biāo)能否達(dá)到目標(biāo)值,而對(duì)整同性狀和用途的樹脂產(chǎn)品以不同的牌號(hào)進(jìn)行區(qū)分。個(gè)切換過(guò)程中質(zhì)量指標(biāo)的波動(dòng)情況以及由此引起的在連續(xù)生產(chǎn)過(guò)程中,不同牌號(hào)的聚烯烴樹脂的生產(chǎn)操作難度缺少關(guān)注。一般地,聚合反應(yīng)器中反應(yīng)生一般通過(guò)改變反應(yīng)器的操作條件實(shí)現(xiàn),以達(dá)到在同成的聚烯烴樹脂性能主要由累積熔融指數(shù)等累積性一裝置中生產(chǎn)不同牌號(hào)的聚烯烴樹脂的目的。然質(zhì)決定,但瞬時(shí)熔融指數(shù)等瞬時(shí)性質(zhì)的過(guò)大波動(dòng)會(huì)而,從一種牌號(hào)的生產(chǎn)到另-種牌號(hào)的生產(chǎn)中間往產(chǎn)生大量不符合目標(biāo)要求的樹脂”。為了避免過(guò)渡往經(jīng)歷一個(gè)產(chǎn)生大量不合格產(chǎn)品過(guò)渡料的過(guò)程(稱過(guò)程中瞬時(shí)熔融指數(shù)的劇烈波動(dòng),本文在聚合反應(yīng)為牌號(hào)切換過(guò)渡過(guò)程),因此在聚合反應(yīng)的牌號(hào)切.牌號(hào)切換優(yōu)化命題中加入對(duì)瞬時(shí)熔融指數(shù)等狀態(tài)變換過(guò)程中盡可能減少過(guò)渡時(shí)間和過(guò)渡料數(shù)量顯得相量的路徑約束,以保證聚合物質(zhì)量指標(biāo)在整個(gè)過(guò)渡當(dāng)重要。過(guò)程中只在規(guī)定的范圍內(nèi)變化,從而不僅使切換結(jié)聚烯烴樹脂的牌號(hào)性能通常用熔融指數(shù)(MI)東后聚烯烴樹脂的性質(zhì)符合目標(biāo)要求,而且過(guò)渡過(guò)和密度來(lái)區(qū)分。實(shí)際生產(chǎn)過(guò)程中,為了盡量減少牌程的操作更加平穩(wěn)。本文以氣相流化床聚乙烯生產(chǎn)號(hào)切換的過(guò)渡時(shí)間和過(guò)渡料數(shù)量通常采用“過(guò)調(diào)”過(guò)程為對(duì)象,在過(guò)渡過(guò)程動(dòng)態(tài)模型的基礎(chǔ)上給出了的操作方式,通過(guò)控制變量的過(guò)調(diào)使熔融指數(shù)等質(zhì)聚乙烯牌號(hào)切換過(guò)程中帶路徑約束和不帶路徑約束量指標(biāo)很快達(dá)到目標(biāo)牌號(hào)值”。這樣的操作常常會(huì)的兩種優(yōu)化命題。針對(duì)常規(guī)的控制變量參數(shù)化方法造成狀態(tài)變量波動(dòng)過(guò)于劇烈,操作平穩(wěn)性差,進(jìn)而較難處理帶狀態(tài)變量路徑約束的動(dòng)態(tài)優(yōu)化問(wèn)題,對(duì)影響到最終的產(chǎn)品質(zhì)量,甚至于產(chǎn)生安全問(wèn)題。為控制變量參數(shù)化方法進(jìn)行了改進(jìn),通過(guò)對(duì)DAE方了找到牌號(hào)切換最合適的操作方式,很多學(xué)者做了程的求解把狀態(tài)變量的路徑約束轉(zhuǎn)化為控制變量的-系列卓有成效的工作。McAuley 等[2]最先對(duì)牌約束。運(yùn)用改進(jìn)的控制變最參數(shù)化方法對(duì)優(yōu)化命題號(hào)切換問(wèn)題進(jìn)行了系統(tǒng)性的研究,把牌號(hào)切換過(guò)程進(jìn)行了求解,給出了仿真結(jié)果。最后對(duì)最優(yōu)牌號(hào)切歸結(jié)為與時(shí)間相關(guān)的動(dòng)態(tài)優(yōu)化問(wèn)題,得到了氣相聚換策略在線應(yīng)用問(wèn)題作了簡(jiǎn)單介紹。乙烯反應(yīng)器中3種牌號(hào)產(chǎn)品序列的最優(yōu)軌跡并建立了MI和密度的質(zhì)量推斷模型。Debling等[3]運(yùn)用1牌號(hào)切換動(dòng)態(tài)優(yōu)化模型動(dòng)態(tài)仿真軟件“POLYRED"對(duì)不同的牌號(hào)切換策1.1氣相流化床聚乙 烯生產(chǎn)過(guò)程動(dòng)態(tài)模型略進(jìn)行了仿真研究。Takeda等[1]采用帶狀態(tài)約束采用Ziegler-Natta催化劑的氣相流化床聚乙和不帶狀態(tài)約束的兩種目標(biāo)函數(shù)形式對(duì)多階段聚合烯反應(yīng)流程如圖1所示",乙烯、氫氣、丁烯、反應(yīng)器的牌號(hào)切換進(jìn)行了優(yōu)化。Wang等|)綜合了催化劑等持續(xù)進(jìn)人反應(yīng)器中,在流態(tài)化條件下進(jìn)行離線動(dòng)態(tài)優(yōu)化和非線性模型預(yù)測(cè)控制,通過(guò)求解常聚合反應(yīng)。通常,在氣相連續(xù)聚合過(guò)程中,當(dāng)催化微分方程和靈敏度方程對(duì)漿液反應(yīng)器進(jìn)行了優(yōu)化。劑體系確定之后,瞬時(shí)熔融指數(shù)(M1,) 和密度Yi等[0以聚合反應(yīng)器為核心給出了全流程角度高(D,)由聚合溫度、氫氣/乙烯比、丁烯/乙烯比、密度聚乙烯(HDPE)的牌號(hào)切換優(yōu)化策略。停留時(shí)間等反應(yīng)條件和氣相組分決定,而累積熔融Chatzidoukas 等川"考慮到流化床反應(yīng)器中控制器結(jié)指數(shù)(MI.) 和密度(D.) 則主要取決于瞬時(shí)熔融構(gòu)對(duì)過(guò)程的可操作性及產(chǎn)品質(zhì)量的影響,運(yùn)用混合指數(shù)和密度的變化[12。對(duì)于該氣相流化床聚乙烯整數(shù)動(dòng)態(tài)優(yōu)化方法對(duì)閉環(huán)挖制器優(yōu)化配置和牌號(hào)切生產(chǎn)過(guò)程,本文采用如下推斷關(guān)系模型和動(dòng)態(tài)相關(guān)換操作方式進(jìn)行了綜合優(yōu)化。Bonvin等80)針對(duì)模關(guān)系111型失配和過(guò)程擾動(dòng)的影響,在流化床聚合反應(yīng)器中采用最優(yōu)性條件校正的方式對(duì)常規(guī)的動(dòng)態(tài)優(yōu)化結(jié)果(1)按過(guò)程時(shí)段和切換時(shí)間分解后同優(yōu)化必要條件進(jìn)行關(guān)聯(lián)提高了動(dòng)態(tài)優(yōu)化結(jié)果的可靠性。Biegler 等[10]D.-p+ pl(M)-(Pp M;}”(2)研究了大規(guī)模高抗沖聚苯乙烯生產(chǎn)過(guò)程的動(dòng)態(tài)最優(yōu)dM=⊥MIr"'s-→M1"s(3)牌號(hào)切換問(wèn)題,離線計(jì)算得到了在不同開環(huán)不穩(wěn)定d896●化工學(xué)報(bào)第61卷(M(0一MI)' +a(P.()-D)"}du表示基函數(shù)個(gè)數(shù)。一旦得到了相應(yīng)的NLP,在NLP求解的每次迭代中都需要運(yùn)用龍格_庫(kù)塔法求[M. =(《(號(hào)一剖}{ +h出子+o冷了)“解DAE方程。在不含狀態(tài)變量路徑約束的情況|D=p +pln(Mn,)- {o M])'下,其算法流程可用圖2表示。initial valuesoptimal valuesdM1V4sM1:1"% - MI:/sdtNLP algorithms.dDTum≤T≤Txx .objectiveobectivefunction(:). <:<(:)_.(出) ]}dr(13)s.t. dz(1)= f(z(t).y(t),u(t))(7di可見(jiàn),當(dāng)約束不起作用,即優(yōu)化變量在路徑約z(t)=動(dòng)0(8(9)束域內(nèi)取值時(shí),懲罰項(xiàng)函數(shù)值及其關(guān)于優(yōu)化變量的g(z(t) .y(t),u(t)) = 0h(z(t),y(t),u(t))≤0(10)梯度均為零,不能夠提供有關(guān)當(dāng)前點(diǎn)和可行域邊界Uain≤u(t)≤Huan(11)間接近程度的有用信息。這樣在優(yōu)化迭代或線性搜其中,u(t)、 z(t)、y(t) 分別表示控制變量、微索中就可能會(huì)出現(xiàn)優(yōu)化變量在可行和不可行取值之分狀態(tài)變量及代數(shù)狀態(tài)變量,to為過(guò)程開始時(shí)刻,間來(lái)回振蕩的情況。這樣的方法改變了目標(biāo)函數(shù)的t為過(guò)程結(jié)束時(shí)刻,20為過(guò)程開始時(shí)刻to時(shí)的初始特性,會(huì)對(duì)非線性規(guī)劃的求解結(jié)果帶來(lái)不良影響。條件。式(7)及式(9)為描述過(guò)程系統(tǒng)特性的微為此,本文對(duì)常規(guī)的控制變量參數(shù)化方法作了改分代數(shù)方程(DAE方程),而式(10) 和式(11)進(jìn),使之能夠較為方便地處理帶不等式路徑約束的分別表示不等式路徑約束和控制變量的調(diào)節(jié)范圍動(dòng)態(tài)優(yōu)化問(wèn)題,主要思路是,當(dāng)命題中含有狀態(tài)變約束。量的路徑約束時(shí),利用狀態(tài)變量與控制變量間的關(guān)控制變量參數(shù)化的實(shí)質(zhì)就是采用參數(shù)化的方法聯(lián)關(guān)系,通過(guò)求解DAE方程把狀態(tài)變量的約束轉(zhuǎn)把原來(lái)在時(shí)域上連續(xù)并且難以描述的控制變量軌跡化為控制變量的約束。改進(jìn)的算法流程如圖3所用容易描述的分段函數(shù)(如[to, ti]上基函數(shù)的示,虛線框內(nèi)部分為路徑約束處理環(huán)節(jié)。線性組合)近似,從而把原來(lái)的函數(shù)優(yōu)化問(wèn)題轉(zhuǎn)化另外,為將式(5) 的時(shí)域積分形式目標(biāo)麗數(shù)為參數(shù)優(yōu)化問(wèn)題[16]轉(zhuǎn)換為式(6)的狀態(tài)終值函數(shù)形式,引人輔助變量重(t)使得u()=(12)其中,中,(t) 為離散化所采用的第j個(gè)基函數(shù),K-(M( M+(B(O-0)'+第4期費(fèi)正順等;帶路徑約束的聚烯烴牌號(hào)切換操作優(yōu)化方法●897●a(M()二M)' +w(R()-D)’(14)增大到過(guò)渡過(guò)程結(jié)束時(shí)的0.44;丁烯/乙烯比由原重(1o)=0。這樣,在原來(lái)的DAE方程中增加一個(gè)MI來(lái)的0. 3635下降到切換終止后的穩(wěn)態(tài)0. 3551.反初始值為0的微分方程將命題二的目標(biāo)函數(shù)轉(zhuǎn)化成應(yīng)器溫度在切換過(guò)程中基本保持不變,維持在初始穩(wěn)態(tài)值360K附近。.終值形式J=@(t).由于在聚乙烯的牌號(hào)切換過(guò)程中要求過(guò)渡時(shí)間initial valuesoptimal values盡可能短,操作變量氫氣/乙烯比和丁烯/乙烯比在input過(guò)渡過(guò)程中均存在“過(guò)調(diào)”現(xiàn)象。圖中顯示,氫NLP algorithmconstraints氣/乙烯比并不是直接就過(guò)渡到牌號(hào)B的穩(wěn)態(tài)值0.44上,而是從牌號(hào)A的穩(wěn)態(tài)值0.1615先上升到DAE0.63,然后再慢慢減小直至達(dá)到目標(biāo)牌號(hào)的穩(wěn)態(tài)solverobjectivefunction值。同樣丁烯/乙烯比先從初始值下降到0. 3310,然后再逐漸上升到目標(biāo)牌號(hào)的穩(wěn)態(tài)值0. 3551。正path是因?yàn)榇嬖谶@種過(guò)調(diào)操作,瞬時(shí)熔融指數(shù)在過(guò)渡過(guò)DAE solver程未達(dá)到穩(wěn)定之前都超出目標(biāo)牌號(hào)的質(zhì)量指標(biāo)值很圖3改進(jìn)的控制變量參數(shù)化方法流程圖多。但當(dāng)過(guò)渡過(guò)程結(jié)束時(shí),瞬時(shí)熔融指數(shù)和瞬時(shí)密Fig. 3 Diagram of improved control度同各自相應(yīng)的累積值大小相等,都穩(wěn)定在目標(biāo)牌vector parameterization號(hào)B的質(zhì)量指標(biāo)值上。為保證最終聚烯烴產(chǎn)物的性能,瞬時(shí)熔融指數(shù)3求解及結(jié)果分析的變化一般不能太過(guò)劇烈。無(wú)路徑約束的情況下不本文考慮了聚乙烯連續(xù)生產(chǎn)過(guò)程中多種虛擬牌能夠有效避免瞬時(shí)熔融指數(shù)等指標(biāo)過(guò)分偏離目標(biāo)號(hào)之間切換的操作,表1為聚乙烯樹脂4種不同牌值,為此在優(yōu)化命題中加入路徑約束MI,(t)≤5號(hào)的質(zhì)量特性。首先分析牌號(hào)A到牌號(hào)B的最優(yōu)構(gòu)造命題二,并對(duì)牌號(hào)A切換到牌號(hào)B的過(guò)程重切換問(wèn)題。把聚乙烯產(chǎn)品從一- 種牌號(hào)切換到另一種新進(jìn)行優(yōu)化,得到優(yōu)化變化軌跡如圖4實(shí)線所示。牌號(hào)的操作優(yōu)化問(wèn)題描述成- - 動(dòng)態(tài)優(yōu)化問(wèn)題,并且同不含路徑約束時(shí)類似,累積熔融指數(shù)及密運(yùn)用前面所提的挖制變量參數(shù)化方法對(duì)不帶路徑約度、瞬時(shí)熔融指數(shù)及密度在過(guò)渡過(guò)程結(jié)束后都能穩(wěn)束(命題一)和帶路徑約束(命題二)兩種優(yōu)化命定在目標(biāo)牌號(hào)要求值上。由于增加了對(duì)瞬時(shí)熔融指題都進(jìn)行了求解,并對(duì)兩組結(jié)果進(jìn)行了比較。數(shù)的路徑約束,在整個(gè)過(guò)渡過(guò)程中瞬時(shí)熔融指數(shù)都沒(méi)有超出上限值5,在切換過(guò)程中變化更為柔和。表1聚乙烯牌號(hào)質(zhì)量指標(biāo)與之相對(duì)應(yīng),氫氣/乙烯比和丁烯/乙烯比也做出了Table 1 Quality properties of four grades相應(yīng)調(diào)整,表現(xiàn)為更加平穩(wěn)。而受瞬時(shí)熔融指數(shù)路GradeMIl/g. (10 min) -1 Density/g. cm-3徑約束影響,切換開始時(shí)的“過(guò)調(diào)”操作受到了一A0. 9197定的限制,累積熔融指數(shù)和瞬時(shí)熔融指數(shù)到達(dá)目標(biāo).0. 9310牌號(hào)值的時(shí)間有所延長(zhǎng),即過(guò)渡時(shí)間變大了。命題0. 92200. 9340中只對(duì)熔融指數(shù)進(jìn)行了路徑約束,過(guò)渡過(guò)程中密度的變化情況跟不含路徑約束時(shí)幾乎完全-樣。不含路徑約束時(shí),聚乙烯由牌號(hào)A切換到牌然后,考慮牌號(hào)A→牌號(hào)B→牌號(hào)C→牌號(hào)號(hào)B的操作過(guò)程中各個(gè)變量的動(dòng)態(tài)優(yōu)化軌跡如圖4D的多種牌號(hào)切換問(wèn)題。限于篇幅,這里只給出了中虛線所示。假定在t=60 min時(shí),開始牌號(hào)切換4種牌號(hào)依次切換時(shí)累積熔融指數(shù)和瞬時(shí)熔融指數(shù)操作。聚乙烯牌號(hào)A切換到牌號(hào)B過(guò)程中,熔融的優(yōu)化軌跡,如圖5所示。其中牌號(hào)A→牌號(hào)B指數(shù)MI從2上升到4,而密度D從0.9197上升過(guò)程中加入路徑約束MI(t)≤5,牌號(hào)B→牌號(hào)C到0.9310。為了使MI上升需要增大氫氣/乙烯過(guò)程中加入約束MI(t)≥2,而牌號(hào)C→牌號(hào)D中比,而減小丁烯/乙烯比可以增大聚乙烯密度。從路徑約束為MI,(t)≤6.5。從圖中可看出,在各種圖中可以看出,氫氣/乙烯比從初始穩(wěn)態(tài)值0. 1615牌號(hào)切換過(guò)程中,通過(guò)引入路徑約束均能有效抑制化工學(xué)報(bào)第61卷0.600.3600.550.3550.50三0.45寫0.350:0.40旨0.345色0.352 0.3400.300.3350.200.3300.32550 100150200250300350 400 450501001502002503003504004501/min(a) concentration ratio of hydrogen to ethylene(b) concentration ratio of butylenes to ethylene.5-0.9340.932.00.930 t.s-息0.9282 0.9240.92.50.9202.0L0 50 100 150 200 250 300 350 400 450 5000.91850 100150 200250 300 350 400 450 500(c) cumulative melt index(d) cumulative density,.s r0.955950.5t.0-號(hào)0.9404.5.告0.9300.9253.02.509150 50100150200 250 300 350 400 450 500 .0 50100150200 250 300 350 400 450 500/min(e) instantaneous melt index(I) instantaneous density圖4牌號(hào)A到牌號(hào)B過(guò)渡過(guò)程中各變量?jī)?yōu)化軌跡Fig.4 Optimal profiles during grade transition from A to Bwith path constraints瞬時(shí)熔觸指數(shù)的過(guò)大波動(dòng),說(shuō)明本文的方法和結(jié)果的前期研究中得到了很好的解決[18],所提出的基對(duì)不同牌號(hào)之間的切換均具有很強(qiáng)的適用性。于塊式遞推限定記憶思想的模型自適應(yīng)算法可以應(yīng)4牌號(hào)切換操作優(yōu)化的現(xiàn)場(chǎng)應(yīng)用用于推斷模型的更新。下面簡(jiǎn)單討論后面兩個(gè)問(wèn)題。實(shí)現(xiàn)聚乙烯牌號(hào)切換操作優(yōu)化的在線實(shí)施至少聚乙烯牌號(hào)切換操作優(yōu)化的工業(yè)現(xiàn)場(chǎng)實(shí)施可以要解決3方面的問(wèn)題:(1)長(zhǎng)時(shí)間持續(xù)應(yīng)用時(shí)推斷通過(guò)如下設(shè)計(jì)的計(jì)算機(jī)監(jiān)控系統(tǒng)平臺(tái)實(shí)現(xiàn),該系統(tǒng)模型的在線自校正能力; (2)現(xiàn)場(chǎng)實(shí)施的硬件平臺(tái)采用4層體系結(jié)構(gòu),最底層為常規(guī)控制層(通常為搭建和與DCS的數(shù)據(jù)交換鏈路; (3) 牌號(hào)最優(yōu)切DCS),第二層是數(shù)據(jù)層(主要包括實(shí)時(shí)數(shù)據(jù)庫(kù)),換策略的軟件實(shí)現(xiàn)。其中,第一個(gè)問(wèn)題已經(jīng)在作者第三層是最優(yōu)牌號(hào)切換計(jì)算與控制層,建模、模型第4期費(fèi)正順等:帶路徑約束的聚烯烴牌號(hào)切換操作優(yōu)化方法●899●5.04.5analysis systemserver4.0: 3.5honeywell學(xué)3.↓1LL2.5 t2000 400 600 800 1000 1200(a) cumulative melt indexTDC-3000 TDC-3000 TDC. 3000圖6聚乙烯裝置計(jì)算機(jī)集成監(jiān)控系統(tǒng)結(jié)構(gòu)圖7Fig. 6 Structure of computer integrated monitoringsystem for polyethylene reactor| operation interfaceL (SQL PLUS)IP21k==application iterftecedatabase(IP 21 API)200400 6008001000 1200t /min(b) instantancous melt indexCIMIO圖5四種牌 號(hào)依次切換質(zhì)量變量?jī)?yōu)化軌跡application programFig. 5 Optimal profiles during transitionsOPC server(optimal grade transitionstratagies)(honeywell APP)」between four grades中--- without path constraints;-- with path constraintsDCS自校正、優(yōu)化計(jì)算、最優(yōu)控制等應(yīng)用軟件在這一層.(honeywell TDC 3000)運(yùn)行,第四層是用戶界面層,總體系統(tǒng)結(jié)構(gòu)如圖6圖7數(shù)據(jù)交換與接口設(shè)計(jì)圖所示。軟件實(shí)現(xiàn)中,除了上述建模、模型自校正、Fig.7 Configuration of process data exchangeand dauabase interface優(yōu)化計(jì)算、最優(yōu)控制等應(yīng)用軟件外,尚需要進(jìn)行實(shí)時(shí)數(shù)據(jù)庫(kù)的生成和管理、人機(jī)界面的設(shè)計(jì)與交互、出了這個(gè)閾值時(shí)才啟動(dòng)參數(shù)更新環(huán)節(jié),對(duì)模型參數(shù)實(shí)時(shí)數(shù)據(jù)庫(kù)與DCS接口、實(shí)時(shí)數(shù)據(jù)庫(kù)與建模/優(yōu)化重新進(jìn)行擬合。應(yīng)用軟件的接口等支撐軟件的集成。以數(shù)據(jù)交換與5結(jié)論接口功能為例,如圖7所示。另外,式(1)、式(2)推斷模型中的模型參本文以氣相流化床反應(yīng)器為對(duì)象,研究了聚乙數(shù)k(i=1, 2, ., 5)和p,(j=1, 2,.,4)需烯連續(xù)生產(chǎn)過(guò)程中的牌號(hào)切換的優(yōu)化問(wèn)題。為有效要用實(shí)際的生產(chǎn)數(shù)據(jù)擬合確定。擬合所用數(shù)據(jù)從監(jiān)避免熔觸指數(shù)等質(zhì)量指標(biāo)在過(guò)渡過(guò)程中的劇烈波控系統(tǒng)實(shí)時(shí)數(shù)據(jù)庫(kù)中獲取,以數(shù)據(jù)窗口形式截取一動(dòng),構(gòu)造了帶狀態(tài)變量路徑約束的動(dòng)態(tài)優(yōu)化命題,定長(zhǎng)度數(shù)據(jù),并且采用最小二乘法進(jìn)行參數(shù)擬合。并且針對(duì)常規(guī)控制變量參數(shù)化方法難以處理含路徑在牌號(hào)切換的過(guò)程中一-般都會(huì)涉及到多個(gè)穩(wěn)態(tài),這約束的動(dòng)態(tài)優(yōu)化問(wèn)題,對(duì)控制變量參數(shù)化方法進(jìn)行就需要對(duì)模型參數(shù)進(jìn)行更新。在實(shí)際應(yīng)用中為減少了改進(jìn),通過(guò)DAE方程的求解把對(duì)狀態(tài)變量路徑計(jì)算負(fù)擔(dān),通過(guò)設(shè)定一個(gè)閾值,當(dāng)模型預(yù)測(cè)誤差超約束轉(zhuǎn)化為對(duì)控制變量約束。然后采用改進(jìn)的控制900●化工學(xué)報(bào)第61卷變量參數(shù)化方法對(duì)優(yōu)化命題進(jìn)行求解,得到了聚乙polymerization reactors. Computers & Chemical烯多種牌號(hào)切換過(guò)程中的各變量的最優(yōu)操作軌跡。[6Engineering. 2000. 24: 1555-1561YiHS, KimJ H,HanCH, LeeJ,Na ss. Plantwide結(jié)果表明,通過(guò)增加路徑約東可以較為有效地防止optimal grade transition for an industrial high-density熔融指數(shù)等質(zhì)量指標(biāo)在牌號(hào)切換過(guò)程中的波動(dòng),雖polyethylene plant. Industrial & Enginering Chemistry會(huì)使過(guò)渡時(shí)間稍微加長(zhǎng),但可以讓質(zhì)量指標(biāo)波動(dòng)更Research, 2003, 42; 91-98小、切換過(guò)程更加平穩(wěn)。[7Chatzidoukas C,Perkins J D, Pistikopoulos E N,Kiparissides C. Optimal grede transition and selection of符號(hào)說(shuō)明closed-loop controllers in a gas phase olefin polymerizationfluidied bed reactor. Chemical Engineering Science, 2003,D.-累積密度,g° cm-'58: 3643-3658D,-瞬時(shí)密度,g. cm-'[8Bonvin D. Bodizs L, Srinivasan B Optimal grade[H;]-反應(yīng)器中氫氣濃度,mol. m~'transition for polyethylene reactors via NCO tracking.Chemical Engineering Research & Design, 2005, 83[M.]反應(yīng)器中乙烯濃度,mol.m-'692-697-反應(yīng)器中丁烯濃度,mol●m~8[9Kadam I V, Marquardt w, Srinivasan B, Bonvin D. OpimalMI.-累積熔融指數(shù),g* (10 min)-'grade transition in industrial polymeriztion processes ria NCO瞬時(shí)熔融指數(shù),g. (10 min) 1tracking, AIChE Joumal, 2007. 53; 627-639T一反應(yīng)器溫度,C[10] Flores Tlacuahuac A. Biegler L T. Soldivar-Guerra E.T。-參考溫度,COptimal grade transitions in the high-impact polystyreneto. 4--分別為過(guò)程開始時(shí)刻及結(jié)束時(shí)刻polymerization proces Industrial & Engineeringu(t) 一控制變量Chemistry Research. 2006, 45: 6175-6189[1]McAuley K B. MacGregor J F. Online inference of polymery()一代數(shù)狀態(tài)變量properies in an industrial polyethylene reactor. AIChEz(),z一分別為微分 狀態(tài)變量及初始值Journal, 1991, 37; 825-835附加變量[12] Liang Jun (梁 軍). On-line measurements and model點(diǎn)()一離散化控制變量的第j個(gè)基函數(shù)analysis of gas phase ethylene polymerization process int一聚合物在反應(yīng)器中的停留時(shí)間fluidized bed reactor ( I )。Journal of Transduction的,的,的,w一分別為目標(biāo)函數(shù)中各罰項(xiàng)的權(quán)重值Technology (傳感技術(shù)學(xué)報(bào)),2003,16; 242-255下角標(biāo)[13]Sato C. Ohiani T, Nishitani H. Modeling,simulation andnonlinear control of a gas phase polymerization processnax-最大值Computers & Chemical Engineering, 2000, 24; 945-951min----最小值[14] Vssiliadis vS, Sargent R W H, Pantelides C C. SolutionReferencesof a class of multistage dynamic optimization problems(I ); Problems withoutpath constrints. Industrial &[1] Wang Jingdai (王靖岱)。Chen Jizhong (陳紀(jì)忠),YangEngineering Chemistry Research,1994, 33; 111-2122Yongrong (陽(yáng)水榮),Opimal grade transition in[15]Biegler L T, Grossmann 1 E Retrospective orcontinuous polymerization process Journal of Chemicaloptimization. Com pulers & Chemical Engineering, 2004,Industry and Engineering (China) (化工學(xué)報(bào)),2001,28: 169-119252: 295-300[16]Schlegel M, Marquardt W. Dection and exploitation of[2] McAuley K B, MaeGregor J F. Opimal grade tansitions inthe control switching strueture in the solution of dynamica gas-phase polyethylene reactor. AIChE Jourmal. 1992,optimization problems. Journal of Process Control。2006.38: 1564-157616: 275-290[3] DeblingJ A, HanGC, KujpersF, VerburgJ, Zacca J,[17] Vasslidis vs, Sargent R W H, Pantelides C C. Solutionof a class of mulistage dynamie optimization problemsRay W H. Dynamic modeling of product grade transitions(I ): Problems with path constraints. Industrial &for olein polymerization processes. AIChE Joural, 1994,Engineering Chemistry Research, 1994, 33; 2123-213340; 506-520[18]Wang Xiaoyong (汪小勇),Liang Jun (架 軍),Liu[4] Takeda M,Ray W H. Optimal-grade transition strategiesYuming (劉育明), Wang Wenqing (王文慶),Recursivefor mulistage polyolefin reactors. AIChE Jourmal, 1999,PLS based adaptive soft- sensor model and its application.45; 1776-1793Journal of Zhejiang University: Engineering Science (浙[5] Wang Y. Seki H, Ohyama s. Akamatsu K, Ogawa M,江大學(xué)學(xué)報(bào):工學(xué)版),2005, 39; 676-680Ohshima M. Optimal grade transtion control fon
論文截圖
版權(quán):如無(wú)特殊注明,文章轉(zhuǎn)載自網(wǎng)絡(luò),侵權(quán)請(qǐng)聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學(xué)習(xí)使用,務(wù)必24小時(shí)內(nèi)刪除。